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FLUORESCENCA DVOJNO VZBUJENIH STANJ

HELIJEVEGA ATOMA V HOMOGENEM
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Abstract

The Stark effect on doubly excited states of helium atom is investigated below
the N = 2 threshold and for high electric field strengths. The ground state pho-
toionisation and inelastic photon scattering cross sections are calculated ab initio.
The method of complex scaling is used to completely take into account the bound-
continuum and continuum-continuum interactions. A CI approach is used to repre-
sent the nonrelativistic Stark Hamilton operator in a Sturmian basis set with several
pairs of nonlinear scaling parameters. The treatment includes the calculation of free
atom eigenstates and eigenenergies of singly and doubly excited states below N = 2
with principal quantum numbers n ≤ 15, of both parities, and with the total or-
bital angular momenta L ≤ 10. These zero field states are used to expand the
eigenstates of the helium atom in the non zero external electric field. The effect of
radiation damping is taken into account by calculating fluorescence rates of singly
and doubly excited states in the electric field. A series of measured photoionisa-
tion cross sections is compared to calculations for electric field strengths up to 84.4
kV/cm. The present theory describes well the prominent spectral features even at
high field strengths for the incident polarisation perpendicular to the external field
(F ‖ P ), whereas only theoretical predictions could be given for the perpendicular
setup (F ⊥ P ). It is shown that the propensity rule holds also in this geometry:
the majority of the ion signal originates from the states with a similar correlation
pattern as the states from the principal a 1P o series, the most likely excited from the
ground state. Theoretical fluorescence yields are in good agreement with VUV and
primary fluorescence yields measured as functions of the incoming photon energy.
While the method can be extended to give reliable results also for higher series mem-
bers, the present calculations are limited to interpret measured spectral features for
n up to 10− 11. The series of prominent peaks that appear in the spectra recorded
with the polarisation perpendicular to the field are shown to evolve from 1P e zero
field states. Furthermore, the decrease in intensity of the (n − 1)c/nb 1P o doublet
is attributed to coupling of optically allowed 1P o states to strongly autoionising 1Se

(for F ‖ P ) and 1De resonances (for F ‖ P and F ⊥ P ), whereas the broad peaks
following the na 1P o resonances near the N = 2 threshold are shown to originate
from field induced dark states with high angular momenta. In addition, the validity
of the same propensity rule from photoionisation is confirmed explicitly for the case
of fluorescence decay in both experimental geometries, F ‖ P and F ⊥ P .

PACS (2006): 31.25.Jf, 32.30.Jc, 32.50.+d, 32.60.+i, 95.30.Ky, 32.70.-n, 32.80.Dz,
32.80.Fb, 32.80.Cy

Key words: helium doubly excited states, Stark effect, photoionisation, inelastic
photon scattering, autoionisation, fluorescence, complex rotation method





Povzetek

Obravnavamo Starkov efekt na dvojno vzbujena stanja helijevega atoma pod ioni-
zacijskim pragom N = 2 za visoke električne poljske jakosti. Iz prvih principov
izračunamo fotoionizacijski presek za atom v osnovnem stanju in presek za neela-
stično sipanje fotonov. Uporabljena je metoda kompleksne rotacije, s katero so v
račun vključene interakcije tipa vezano stanje-kontinuum in kontinuum-kontinuum.
Rešitve nerelativističnega Hamiltonovega operatorja za atom v električnem polju ǐs-
čemo z mešanjem konfiguracij. Operator zapǐsemo v bazi Sturmovih funkcij z razli-
čnimi pari nelinearnih parametrov za oba elektrona. Obravnava obsega izračun last-
nih stanj in pripadajočih lastnih energij enojno in dvojno vzbujenih stanj prostega
atoma obeh parnosti z glavnimi kvantnimi števili n ≤ 15 in celotnimi tirnimi vr-
tilnimi količinami L ≤ 10. Po teh stanjih razvijemo lastna stanja atoma v zu-
nanjem električnem polju. Učinke radiativnega razpadnega kanala upoštevamo z
izračunom verjetnosti za fluorescenčni razpad enojno in dvojno vzbujenih stanj v
električnem polju. Izmerjene fotoionizacijske preseke primerjamo z izračunanimi za
električne poljske jakosti do 84.4 kV/cm. Model dobro opǐse strukture, ki so prisot-
ne v izmerjenih spektrih, tudi pri visokih poljskih jakostih tedaj, ko je polarizacija
vpadne svetlobe usmerjena vzdolž zunanjega električnega polja (F ‖ P ). Za primer
F ⊥ P podamo teoretične napovedi. Pokažemo, da velja prednostno pravilo fo-
toionizacije tudi v tej geometriji: večina izrazitih vrhov izhaja iz stanj s podobnim
korelacijskim značajem, kot ga imajo stanja glavne serije a 1P o, ki jih najverjet-
neje vzbudimo iz osnovnega stanja. Tudi izračunani fluorescenčni pridelki se dobro
ujemajo z izmerjenimi pridelki VUV in primarne fluorescence. Metoda, ki smo jo
uporabili, je načeloma lahko zanesljiva tudi pri vǐsjih Rydbergovih stanjih, vendar
lahko v okviru trenutne računske sheme obravnavamo stanja s kvantnimi števili n
do približno 10 ali 11. Pokažemo, da izvira serija močnih vrhov v spektrih s pra-
vokotno usmerjeno polarizacijo (F ⊥ P ) iz stanj, ki imajo v polju nič simetrijo 1P e.
Zmanǰsanje dubleta (n− 1)c/nb 1P o smo pripisali sklopitvi z resonancami simetrije
1Se (za F ‖ P ) in 1De (za F ‖ P in F ⊥ P ), za katere je zelo verjeten avtoioni-
zacijski razpad. Pokazali smo, da so široki vrhovi, ki sledijo resonancam tipa a 1P o

v bližini praga N = 2, posledica stanj z visokimi vrtilnimi količinami, ki jih lahko
vzbudimo v prisotnosti električnega polja. V nadaljevanju smo potrdili, da velja
že omenjeno prednostno pravilo tudi za fluorescenčni razpad pri obeh orientacijah
polarizacije vpadne svetlobe, F ‖ P in F ⊥ P .

PACS (2006): 31.25.Jf, 32.30.Jc, 32.50.+d, 32.60.+i, 95.30.Ky, 32.70.-n, 32.80.Dz,
32.80.Fb, 32.80.Cy

Ključne besede: dvojno vzbujena stanja atoma helija, Starkov efekt, fotoioniza-
cija, neelastično sipanje fotonov, avtoionizacija, fluorescenca, metoda kompleksne
rotacije
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Chapter 1

Introduction

1.1 Overview

The helium atom represents the simplest nontrivial quantum mechanical system that is easy
to manipulate experimentally. As such it has been a subject of many practical and theoretical
studies since the early days of quantum physics [1]. The availability of tunable synchrotron
radiation sources was essential for the first direct observation of helium doubly excited states in
photoabsorption spectra by Madden and Codling in 1963 [2]. It immediately became clear that
electrons in these states are strongly correlated [3]: a single configuration description of dou-
bly excited states with two electrons moving independently in the average centrally symmetric
potential is no longer adequate, not even in the zero order approximation. For the satisfactory
explanation of the measured spectra, the electron-electron correlation should be considered ex-
plicitly. This stimulated the search for the corresponding good quantum numbers which still
continues today [4].

All doubly excited states lie above the first ionisation threshold of helium at 24.587 eV
(N = 1) and below the double ionisation threshold at 79.003 eV (N → ∞). The energy
diagram is schematically presented in Fig. 1.1. Most of the lowest lying states decay very fast
by autoionisation. The weakest of the three dipole allowed 1P o series of states converging to
the second ionisation threshold at 65.399 eV (N = 2), the so called c series, was detected in
a photoionisation spectrum only 15 years ago [5]. The resonance profiles are very narrow and
challenge the ultimate performance of synchrotron beamlines [6].

Autoionisation to the He+ continuum was considered from the beginning to be the strongest
decay channel of doubly excited states, and the ion yield measurements were taken as a fair
measure of the absorption spectrum. Although fluorescence decay of these states was the first
signature of their existence [7], it was believed to be of negligible importance until the recent
experimental search for metastable atoms and photons clearly showed the presence of fluores-
cence in the resonant decay scheme below N = 2 [8]. This invoked a fresh interest in studying
doubly excited states over the last decade, especially for spectroscopic purposes, because the
fluorescence lines are not broadened due to the interaction with continuum [9]. Basically, the
following reaction is studied:

He(1s2) + γ(ω0) → Ψi → He+ + e− , autoionisation

→ He(1snl) + γ(ω ≈ 40 eV) , primary fluorescence

→֒ He(1snl′) + γ(ω′ ≈ 2 eV) , secondary fluorescence
. . .

→֒ He(1s2) + γ(ω′′... ≈ 20 eV) ,
(1.1)
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where Ψi denotes the resonant state below N = 2. It is easy to understand that the primary
fluorescence transition of an inner electron should be more probable than autoionisation, at least
for higher lying members of doubly excited state series (high n), when the average inter electron
separation becomes large. The limiting value of n depends on the character of the Rydberg
series and may not be extremely high. In fact, for the weak 1P o series mentioned above, the
fluorescence decay is already more probable than autoionisation for the first member of the
series [10]. The difference between the photoabsorption and photoionisation spectra for the
lowest members of this series was demonstrated explicitly by Prince et al. [11]. Similar situation
occurs for autoionising resonances [2s]np 1P o in neon. The experimental study reported a signal
of fluorescence decay and showed that it dominates the autoionisation for n > 27 [12].

Figure 1.1: Schematic energy diagram of helium. In this work we study the photoexcitation of
resonances below N = 2 threshold in the static electric field and their decay by the autoionisation
(dotted line) and fluorescence.

Another consequence of ever larger separation of the Rydberg electron from the core is that
fine (hyperfine) structure interaction of the inner electron with the nucleus becomes stronger than
Coulomb interaction with the outer electron. When n approaches the threshold, the LS coupling
scheme turns into the jK coupling [13]. This change is reflected in the shape of the helium
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fluorescence spectrum and calls for relativistic description of the process in the region of high
Rydberg states. Indeed, an excellent agreement of the calculated jK fluorescence probabilities
with the measurements was demonstrated close to the N = 2 threshold [14]. In argon absorption
spectrum, the low lying LS-forbidden states were already observed in 1969 [15], and also very
recently, in the photoelectron spectra as a pair of mirroring resonances in Ar+[3p]1/2,3/2 cross
sections [16]. One of the first absorption spectra in neon taken with synchrotron light was
interpreted completely within the LS coupling scheme, except for the presence of two Rydberg
series converging to the Ne+[2p2]3s 2P threshold [17]. It was most surprising that in helium, three
of four series of triplet states with total angular momentum J = 1 were observed in the recent
high resolution photoexcitation study below N = 2 threshold, this time in the fluorescence decay
channel [9, 18]. A relatively simple experimental technique which favours observation of triplet
states by the efficient detection of metastable atoms made it possible to observe triplet-singlet
mixing already in the perturbative regime as shown later on in detail [19, 20]. The predicted
angular distributions of emitted VUV photons were soon confirmed experimentally [21]. Spectra
of primary and secondary emitted photons were patiently collected to verify the occurrence of
predicted transitions and their relative yields [22–24].

A few years ago, the research started also in the time domain. Calculations show that the
fluorescence of all doubly excited states bellow N = 2 display lifetimes of the order of 100 ps.
This is similar to 99.717±0.0075 ps, the lifetime of 2p state of the He+ ion which is excited only
above the N = 2 threshold and fluoresces into He+ 1s [25]. With some effort, such lifetimes can
nowadays be directly measured by recording the exponentially decaying flux of emitted photons
upon pulsed excitation. The first member of the weakest 1P o series, the 3c state, for which the
fluorescence is a dominant decay channel, was predicted to have a lifetime of 206 ps [19] and 194
ps [20]. The effect is explained to occur for doubly excited state due to the Stark mixing of an
inner electron in the rotating electric field of an outer electron which generates a series specific
admixture of 2p and 2s orbitals occupied by the inner electron which most probably makes a
fluorescence transition [26]. The predictions were not far from the direct measurement, which
reported the value of 190±30 ps [27]. Later measurements for higher members of the same series
show that the lifetime increases with n, as also suggested by calculations [28, 29]. On the other
hand, the autoionisation of 3Do series below N = 2 is parity-forbidden. The lifetime of the first
member of the series (n = 3) was measured by a beamfoil technique [30] and was determined to
be 110 ± 20 ps, again in agreement with the theoretical description [20].

The field effects on the helium oscillator strength distribution in the energy region close
to the first ionisation threshold was studied previously in detail [31]. Modelling of the field
effect has mainly concentrated on transitions from the ground state of hydrogen [32, 33], since
the hydrogen atom is the only atomic system for which the full separability of coordinates is
possible in a non zero electric field. The Stark effect in helium was first studied many years ago
by recording fluorescence from low singly excited states [34]. Later it provided a definitive test
[35] of the quantum mechanical treatment given by Schrödinger [36]. The helium absorption
spectrum around N = 1 shows similarity of the field dependent oscillator strength distribution
with that of the hydrogen atom approaching the ionisation limit [31]. The oscillator strength
distribution in the zero electric field above the ionisation limit only weakly depends on the
energy, and below the limit the only contributions arise from the single 1s2 → 1snp series,
similar to the hydrogen case. It was shown that the same tools (relatively small hydrogen-like
basis and diagonalisation) can be used to explain the measured absorption spectrum.

It is much more complicated to understand the behaviour of helium doubly excited states.
Many of predicted states are not accessible by simple photoabsorption, and it is of great funda-
mental interest to experimentally verify their existence, theoretical energies and other properties.
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The energies of singlet and triplet S, P , D, and F doubly excited states of He below the N = 2
threshold have been calculated by Lipsky et al. [37], Liu et al. [19] and Chen (Ref. [38] and
the references therein). There are ten singlet S, P , and D series below N = 2: two 1Se, three
1P o, one 1P e, one 1Do, and finally three 1De series. This can be easily verified by composing
the relevant two electron configurations. Beside the three optically allowed 1P o series, to date
also some members of the 3P o and 3Do series have been studied [9, 18]. The first term of the
1De

2 series has been detected in angle resolved photoelectron spectra [39], and some of the low
lying terms with n ≤ 5 of 1Se, 1,3P o, and 1De

2 series have been studied by electron scattering
[40, 41]. However, none of the six even series can be observed in simple photoabsorption due to
the selection rule requiring a parity change.

Forbidden states of even parity can be made Stark allowed in an electric field, but detailed
examination of the Stark effects on these doubly excited states is just beginning. Chung et al.
[42] estimated that field strengths of about 50 kV/cm are necessary to observe the effects on
doubly excited resonances below N = 2 and for n = 6, and this estimate appears reasonable:
fields up to 500 kV/cm were employed to induce Stark effect in the related three body sys-
tem, the hydrogen negative ion [43]. The photoionisation cross section was measured with the
field parallel to the polarisation of the incoming light for the field strengths up to 84.4 kV/cm
supporting this estimate [44]. Harries et al. concentrated on the energy region of 6a − 8a 1P o

states below N = 2, which was found previously to be convenient for the implementation of the
complex rotation saddle point method [42]. The calculated Stark map was essentially confirmed
by the measurements, showing a wealth of new structures in the photoionisation spectrum. The
propensity rule was proposed to predict the subsets of doubly excited states that are preferen-
tially populated in such experiments [45]. It was also shown theoretically that the spin-orbit
effect negligibly interferes with the Stark effect in the energy region of low lying resonances [46]:
while the former provides a coupling of singlet and triplet states with the same parity, the later
effect couples odd and even states with the same spin multiplicity.

1.2 Motivation and outlook

To explore the advantage of the fluorescence spectroscopy in the case of the Stark effect, it
is important to quantify the fluorescence yield from dark (even) states or, in other words, to
determine the fraction of the allowed 1P o symmetry in the states submitted to static electric
fields. Beside the above mentioned photoionisation data which are still not reproduced in full,
several measurements of the fluorescence and metastable atom yield were done recently by the
research groups of Penent et al., Rubensson et al., Prince et al., and Harries et al. using the
beamtimes at synchrotron Elettra (Trieste), Bessy2 (Berlin), Photon Factory (Tsukuba) and
ALS (Berkeley). They investigate the effect of field strengths of a few kV/cm on the primary
and secondary fluorescence below N = 2, in the energy, as well as in the time domain. The
model input is absolutely essential for the interpretation of the acquired data, due to the wealth
of new structures and decay paths which open in the nonzero field. It is a goal of this work to
provide, at least partially, that missing model.

Firstly, there are indications from the VUV yield measurements [47] that previously unob-
served higher members of 1De and 1P e series can be detected at relatively weak electric field
strengths compared to those used by Harries et al. [44]. To interpret this data we have used
a perturbation approach to generate the first theoretical estimates of the total primary VUV
fluorescence yield emitted by even parity resonances, after the photoexcitation of helium with
linearly polarised light. This path, together with results, is described in Chapter 3 of this
work, after some initial general observation about helium quantum states and the corresponding
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experimental techniques are presented in Chapter 2.
Becoming aware of the limitations of the first order perturbation, we set to perform the

non perturbative calculations based on the exact consideration of bound-continuum coupling
in the frame of the method of complex scaling and retaining to the lowest order the coupling
of the atom with the photon field. Realisation of this method, whose general principles and
numerical implementation are described in Chapters 4 and 5, together with presentation of the
results in Chapter 6, is our main achievement and occupies the rest of this work. By using a
screened Sturmian basis and including total orbital angular momenta up to L = 10, we were
able to reproduce measured photoionisation spectra in detail and predict the outcome of the
similar measurements in the perpendicular geometry, taking into account the existence of the
fluorescence channel. Considering carefully the inelastic photon scattering from the resonances
calculated in the complex space, we could also calculate the total emitted photon yield depending
on the incoming photon energy in the energy region of doubly excited states. This is compared
to the above mentioned VUV photon yield measurements in the parallel and perpendicular
geometry. The knowledge of theoretical photoionisation spectrum is very important here, since
the data is partially contaminated by the spurious fluorescence signal unavoidably generated
by electrons and ions hitting the electric field capacitor. Extracting theoretical values, we can
also compare our calculations with a recent measurement of 1P e lifetimes in the electric field,
which indicate a more prompt photon emission when the electric field strength is increased [48].
This effect can be attributed to the gradual opening of the otherwise forbidden autoionisation
channel with the presence of the field which destroys the LS symmetry of the states. Due to
the large but still finite size of the basis set, the accuracy of our calculations starts to diminish
for the states with n > 13. As such, they complement a very recent study which also models
doubly excited states in weak electric fields, but employs R matrix multichannel quantum defect
theory to focus on the states with n > 12 [49].

Finally, Appendices A-E are added to list most of the details of calculations and to contain
extended tables of the theoretically deduced properties of doubly excited states like energy
positions, decay probabilities and asymmetry parameters which are also among essential results
but rather boring to enter the main part of the work.

Hartree atomic units (~, me, e = 1, 4πǫ0 = 1, c = 1/α, cf. Appendix A) are used throughout
this work, unless explicitly stated.
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Chapter 2

Helium doubly excited states

2.1 A standard CI approach

The helium atom in an externally applied time independent homogeneous electric field is de-
scribed by the Hamilton operator

H = H0 + ∆H , H0 =
p2

1

2
+

p2
2

2
− Z

r1
− Z

r2
+

1

|r1 − r2|
,

∆H = −F · (r1 + r2) .

(2.1)

Above H0 and ∆H denote the free atom Hamiltonian and the interaction of the atom with the
electric field. The nucleus is taken as infinitely heavy and point-like, with charge Z = 2, r1, r2

and p1, p2 are the coordinates and the momenta of the two electrons, respectively, and F is the
electric field vector.

We will be concerned with finding eigenstates of H for different values of F at energies
approaching the ionisation thresholds. Keeping away from the very threshold, we can omit the
(hyper)fine interaction from the calculation scheme and relay on the finite (but large) basis
set. Although the inclusion of these effects was essential to understand the spectrum of the
metastable atom, the contribution of photons emitted from triplets to the fluorescence yield
in the zero field was found negligible if n was not excessively large. The interaction with the
static electric field does not change that since it cannot generate singlet-triplet mixing. About
70 meV below N = 2 (this roughly corresponds to n = 13), the situation gradually changes
as altogether seven LS series with J = 1 become interleaved, converging to the three slightly
distinct thresholds of the helium ion: 2p1/2, 2p3/2, and 2s1/2. In that region, the measured ion
and photon yield spectra severely depart from the LS prediction, as already mentioned.

Note that non relativistic free Hamiltonian H0 does not favour any particular direction in
space and therefore commutes with the square of the total orbital angular momentum operator
L2 = (l1 + l2)

2 and the corresponding projection operator Lz. The total angular momentum L
and its projection M are good quantum numbers, as well as obviously are the total spin S and
its projection MS . The states with different M and/or MS are degenerate. From the inversion
symmetry displayed by H0 it follows that parity π is a good quantum number, too.

Opposite to the hydrogen case, the exact eigenfunctions of Eq. (2.1) cannot be found. One
can construct very crude hydrogen like solutions assuming that both electrons move indepen-
dently in the spherically symmetric Coulomb potential of the helium nucleus. Still better, the
electron-electron interaction can be approximately accounted for by absorbing its central part
into some effective spherically symmetric single electron potential, either by introduction of the
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Coulomb screening (e.g., using the rules of J.C. Slater [50] or of M. Kregar [51]) or determined
by the radial screening and radial orbitals by the self-consistent Hartree-Fock (HF) procedure
based on minimisation of the configuration state energy [52]. In any of this cases, the solution
is expressed by two single electron orthonormal wavefunctions

〈q1|n1l1m1ms1
〉 and 〈q2|n2l2m2ms2

〉 . (2.2)

As in the hydrogen case, they are described by the principal (radial) quantum numbers n1

and n2, the orbital and magnetic quantum numbers l1, m1 and l2, m2, and the spin magnetic
quantum numbers ms1

and ms2
. The shorthand notation qi = (ri, σi), i = 1, 2, has been

introduced, where ri denotes electron position coordinates and σi the components of the spins
along the quantisation axis. A simple product of two electron function is usually replaced by
linear superposition to generate the eigenfunction of LMSMS with parity π [13, 53],

〈q1, q2|n1l1n2l2LMSMSπ〉 =
∑

m1,ms1
m2,ms2

(l1m1l2m2|LM)(1/2 ms1
1/2 ms2

|SMS)〈q1|n1l1m1ms1
〉〈q2|n2l2m2ms2

〉 . (2.3)

Clebsch-Gordan coefficients are denoted by (l1m1l2m2|LM) and (1/2 ms1
1/2 ms2

|MMS). Fur-
ther on, the wavefunction is antisymmetrised with respect to the q1 ↔ q2 interchange,

ψn1l1n2l2
LMSMSπ(q1, q2) ≡ 〈q1, q2|ψn1l1n2l2

LMSMS
〉

= N
[

〈q1, q2|n1l1n2l2LMSMS〉 − 〈q2, q1|n1l1n2l2LMSMS〉
]

.
(2.4)

The normalisation constant N is determined by the condition

‖ψn1l1n2l2
LMSMSπ‖2 = 1 . (2.5)

Using the symmetry property of the Clebsch-Gordan coefficients

(j2m2j1m1|jm) = (−1)j1+j2−j(j1m1j2m2|jm) , (2.6)

Eq. (2.4) becomes

ψn1l1n2l2
LMSMSπ = N

[

〈q1, q2|n1l1n2l2LMSMS〉 + (−1)L+S+l1+l2〈q1, q2|n2l2n1l1LMSMS〉
]

. (2.7)

For equivalent electrons (n1 = n2 ≡ n, l1 = l2 ≡ l), the coupled wavefunctions are equal, and
Eq. (2.7) simplifies further to

ψnlnl
LMSMSπ = N

[

1 + (−1)L+S
]

〈q1, q2|nlnlLMSMS〉 . (2.8)

Eq. (2.8) represents a physically meaningful state only when L + S is even. Eqs. (2.5), (2.7),
and (2.8) give the normalisation constant equal to

N =

{

1/2 ; equivalent electrons

1/
√

2 ; otherwise
(2.9)

Parity π of the state is odd (o) if l1 + l2 is odd, and even (e) otherwise.
The functions (2.8) and (2.7) both represent single configuration approximation to the so-

lution of H0. If such approximation can yield satisfactory results for singly excited states of
helium, this is in general not so for strongly correlated doubly excited states. The predictions
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of the oscillator strength for the ground state excitations, the autoionisation probabilities, and
also the fluorescence decay rates can be wrong for order of magnitudes [54]. To refine the re-
sults for singly excited states or to obtain usable approximation for doubly excited states in
the zero field, one should allow the ith solution of the eigenvalue problem to be expressed as
linear combination of the configuration states with the same LMSMSπ numbers, the so-called
configuration interaction (CI),

|ψi〉 =
∑

n1,n2

l1,l2

cn1n2l1l2
i |ψn1l1n2l2

LMSMSπ〉 . (2.10)

The importance of such mixings in doubly excited He was first considered by Cooper, Fano and
Prats [3] with their “±” classification of the (2snp±2pns) 1P o Rydberg series. If a large number
of appropriately selected configurations is included into the CI basis set, a substantial number
of eigenenergies and eigenfunctions can be accurately obtained solely by diagonalisation of the
matrix representation of H0. Even more precise for small scale calculations is the approach
where, for each state separately, the configuration weights and the shapes of radial orbitals are
optimised by the self consistent MCHF procedure [52], but it may be sometimes hard to obtain
the convergence.

2.2 Correlation quantum numbers

Very successful attempts to economically describe doubly excited states have been done in the
past by using the so-called Hylleraas coordinates r1, r2 and r12 [55]. The state correlation pattern
cannot depend on the three Euler angles which determine the orientation of the electron-nucleus-
electron system. These can be filtered out of H0. The solution of the rest is sought variationally
as a linear combination of the Hylleraas coordinate (power) products describing the shape of
the triangle. The triple integrals involved in the procedure are more difficult to deal with than
the two dimensional radial integrals from the CI method, after the problem has been reduced
by using the standard angular algebra. Anyway, the correlation pattern which is incorporated
into CI solutions can be accessed easily by projecting out the Euler angles [56].

In general, as mentioned above, we hope in vain that a set of single electron quantum
numbers n1, n2, l1, l2 would complete the collection of good quantum numbers for doubly
excited states. There have been many efforts in the past to find the quantum numbers which
would account as much as possible for the effect of electron-electron interaction. Due to the
practical reasons, namely to present the state notation often employed by other references, we
are going to mention briefly some attempts to find these quantum numbers for doubly excited
states in the zero electric field. The validity of these, still approximate solutions, are generally
checked against those obtained by using the large-scale conventional configuration interaction
(CI) method, described above.

The approach, yielding two new quantum numbers K and T was presented by Herrick and
Sinanoğlu [57]. The numbers resulted from the method involving diagonalisation of an operator
B2 = (b1−b2)

2 , where b1 and b2 are proportional to the Runge-Lenz vector for electrons 1 and
2, respectively [58]. The strong point of the DESB approach is that it predicts quite well (but
not exactly) the intrashell mixings of two electron degenerate hydrogenic configurations (e.g.,
2s2 : 2p2 1Se) subjected to electron-electron interaction. For given L and N , the ranges of K
and T are determined as follows:

T = 0, 1, . . . ,min{L, N − 1} ,

±K = N − T − 1, N − T − 3, . . . , 1 (or 0) .
(2.11)
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For the states with π = (−1)L+1, T = 0 is not allowed.
These two integer numbers are convenient indices for labelling angular correlations. In fact,

K and T had also been used to label asymptotic dipole states for scattering systems like e−−H,
e− − He+, e− − Li2+, etc. [59], i.e., they label Stark states which have long range dipole
interaction. In terms of the asymptotic properties of the two electrons, K is proportional to
the average value of r1 cos θ12, where θ12 is the angle at which the two electrons are seen from
the nucleus. T describes the magnitude of the overlap l1 · r̂2, or roughly speaking, the relative
orientation between the orbitals of the two electrons. If the two electron orbits are on the same
plane, then T = 0 [60].

Finally, the third new approximate quantum number which describes radial correlation arises
from the well established quasi separability of H0 in hyperspherical coordinates: the wave func-
tions are expressed as Fn

µ (R)Φµ(R; α, r̂1, r̂2) where hyperradius R =
√

r2
1 + r2

2 and hyperangle
α = arctan(r2/r1) describe the size and radial asymmetry of the atom, respectively. Lin [60]
was able to relate the channel index µ to the apparent quantum number A which can assume
only three values: 0 and ±1. Channel functions Φµ either exhibit exactly or approximately an
antinode (A = +1) or a node (A = −1) at α = π/4. Channels that do not have either properties
are assigned to have A = 0, and are similar to singly excited states of two electron atoms.

The classification scheme valid for all states of two electron atoms in the zero electric field
assigns to a given doubly excited state a set of (exact and approximate) quantum numbers
nNLSπ(K, T )A. According to the scheme, there are three dipole allowed 1P o series converging
to the N = 2 threshold: (0, 1)+, (1, 0)−, and (−1, 0)0. The last one is the previously mentioned
weakly autoionising c series.

It is still a matter of investigation, also of this work, to what extent the approximate quantum
numbers are conserved in the non zero electric field. To model the photoionisation and fluores-
cence yield spectra in the field, we have selected to use the all in one CI approach since we have
to handle many states at many different field values. We choose to denote doubly excited states
by very practical and simple notation scheme, which was introduced by Lipsky et al. [37]: the
energetically lowest lying state with given LSπ symmetry above the N − 1 ionisation threshold
is denoted as the first member of Rydberg a series, the second lowest lying state which does not
fit into the Rydberg sequence of the a series is denoted as the first member of Rydberg b series,
etc. The members of the same series are enumerated by means the quantum number n, starting
from the lowest available value (this can be checked by considering different configurations of
given LSπ symmetry where the (inner) electron is restricted to n1 = N). It can be shown that
below N = 2, only a small number of different Rydberg series with a given LSπ symmetry exist:
(a, b) 1Se, (a) 1P e, (a, b, c) 1P o, (a) 1Do, (a, b, c) 1De, etc. Except for the 1Se symmetry, there are
always 3 different singlet series when L + π is even and 1 series otherwise. The rule is different
and numbers are larger for series converging to higher ionisation thresholds. This notation maps
1:1 onto the (K, T )A classification scheme of Lin [60].

2.3 The Stark effect

As mentioned above, the approximate quantum numbers of field free helium doubly excited states
bear some resemblance to the Stark quantum numbers which are used to describe the states of
the hydrogen atom exposed to the homogeneous electric field. To make the understanding easier,
we review below the basic characteristic of the latter system.

It is well known that, besides in spherical coordinates r, θ, and ϕ, the Schrödinger equation
for the hydrogen atom is also separable in parabolic coordinates r(1 − cos θ), r(1 + cos θ), and
ϕ [58]. The solutions can be written in the analytical form and are characterised by a set of
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parabolic quantum numbers N1, N2, and m, where N1 and N2 take nonnegative integer values,
and m has the usual meaning. This set exactly substitutes the usual spherical quantum numbers
nlm by using the correspondence

n = N1 + N2 + |m| + 1 . (2.12)

The energy spectrum of the hydrogen atom consists of bound states (E ≤ 0) and continuum
(E > 0). When the field is turned on (F > 0), there are no longer bound states – the energy
spectrum is absolutely continuous. Fig. 2.3 shows the cross section of an attractive Coulomb
well potential modified by the field presence. Note the lowering of the ionisation threshold for
−2

√
F and the finite thickness of the potential barrier on one side, due to which the tunnelling

probability becomes different from zero. Physically, the atom would always ionise in the field
direction if enough time were available. The bound hydrogenic wavefunctions become resonances
in the field, and are labelled by the parabolic quantum number N2 (it is conserved in the field
since the potential on the other side of the well becomes even more confining), the magnetic
quantum number m and the (continuous) energy E, which replaces N1. The separation of the
Schrödinger equation in parabolic coordinates is still effective in the non zero field. Although
equations cannot be solved in the closed analytic form, they can be integrated numerically to
any degree of accuracy [61]. Their properties close to the threshold can be efficiently studied by
the non perturbative complex rotation method [62], which will be presented later in Chapter 4.

Figure 2.1: The Coulomb potential of the nucleus is modified by the external static electric field,
allowing an electron to tunnel through the barrier.

However, for the former bound states deep in the potential well, the coupling to continuum
is vanishingly small. Below the classical saddle point, the main effect of the field is to mix the
neighbouring states with different parabolic quantum numbers but the same m, projection of
the angular momentum l on the field direction. Apart from the spin degrees of freedom, m is
the only remaining good quantum number in the non zero field, since lz commutes with the
electron coordinate along the field direction. Partially removing degeneracy, the mixing occurs
first within the same manifold n, but as the field strength is increased, the states with the
same m value from many manifolds become involved. The hydrogen atom in its first excited
state behaves as though it had a permanent electric dipole moment of magnitude 3 that can be
oriented in three different ways: one state parallel to the external field (N1 = 0, N2 = 1, m = 0),
one state antiparallel to the field (N1 = 1, N2 = 0, m = 0), and two states with zero component
along the field: (0, 0, 1) and (0, 0,−1) [58].
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Figure 2.2: Conditional probability densities for the second electron in n = 3, N = 2, 1P o
1

doubly excited states in He with no electric field. The nucleus is in the centre of the plot. The
position of the first electron is marked by the black circle. Each state is denoted by (K, T )A

numbers, the energy E, the autoionisation decay rate Γ, and the fluorescence decay rate γ.
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The parabolic quantum numbers characterise correctly the dynamics of the helium doubly
excited state if the outer electron is far away from the nucleus so that it merely creates a
(constant) electric field for the inner one. The above mentioned classification scheme for helium
is equivalent to the Stark scheme for the hydrogen atom, namely [4]

K = N2 − N1, T = |m| . (2.13)

Using that rule, one can immediately construct three (K, T ) pairs of numbers, which match
exactly those written above for the case of 1P o series converging to N = 2 threshold. In fact,
since the rule involves neither L or π, it is valid for all singlet series converging to N = 2.
The exception is 1Se symmetry, where only two series of this kind exist, and the series with
π = (−1)L+1 (for the latter, only one series exist). The maps of the conditional reduced
probability density calculated from the correlated states 1P o with n = 3 clearly reveal the Stark
character which follows from the state notation (Fig. 2.3) [56].

The information on the third approximate quantum number A is lost in the parabolic/DESB
classification. It was shown to appear naturally in the two centre adiabatic approach [63], as
the eigenvalue of the body-fixed electron exchange operator, which can assume only values ±1.
As mentioned above, Lin used the same values to mark the presence of antinodal/nodal line in
the hyperspherical adiabatic wavefunctions, but used also A = 0 for no apparent symmetry with
respect to line r1 = r2.

2.4 Propensity rules

Beside selection rules, which are strict and rely on good quantum numbers, propensity rules
also exist that are based on approximate quantum numbers. These control, to some extent, the
strength of the radiative and non radiative transitions to and from doubly excited states. The
degree of accuracy of the propensity rules is checked by experiments and, eventually, by the
precise large scale calculations. Below we describe only the zero field propensity rules, although
recently the rules for the non zero electric field started to appear [45]. They will be discussed
later in Chapter 6.

In general, the (K, T )+ states autoionise with higher probability than the other states with
the same n and N , regardless of their LS symmetry. The electrons in states with A = +1 are on
average closer to each other than in the states which do not display the antinode at r1 = r2 (Fig.
2.3). The autoionisation widths of the corresponding A = −1 (0) states are usually two orders
of magnitude smaller. The + states with n = 3 and N = 2 have largest widths. They are of the
order of 100 meV, and can be easily directly measured [9]. Along the series, the autoionisation
width decreases as n−3. The oscillator strength for the ground state photoexcitation of dipole
allowed 1P o states behaves exactly the same way [10, 18].

The propensity rule for the radiative dipole transitions applied to the ground state photoab-
sorption gives a preference to ∆T = 1 transition. Since T = 0 for the ground state, there is
only one 1P o series with T = 1 converging to ionisation threshold N that fulfils this condition.
The predominant excitation of one, the so called principal series below the N = 2−4 thresholds
was, first confirmed by experiments of Woodruff and Samson [64].

This approximate selection rule can be qualitatively understood in classical terms, as pre-
sented by Lin [60]. In the ground 1Se state, correlation between the two orbits of the two
electrons are coplanar (T = 0) but of opposite senses, so that both electrons can approach the
nucleus simultaneously (A = +1). Upon receiving the angular momentum and energy from the
photon, it is easier for one of the electrons to change its orbit to a different orientation, such that
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two orbits are no longer coplanar (T = 1), while at the same time the sense of rotation (A = +1)
is maintained. To end up with A = −1 states, one of the electrons, after photoabsorption, has
to change its sense of rotation and this is much harder than just changing the orientation of the
orbit. However, the de Broglie wavelength for each electron is quite long and this explanation
should not be taken too literally. For transitions between doubly excited states Rost et al. have
given more elaborated propensity rules based on the analysis of the adiabatic molecular model
of helium [4].

2.5 Experimental

In 1960’s, at the beginning of the synchrotron radiation era, Madden and Codling performed
classical photoabsorption experiments in the VUV region on several noble gases [2, 15, 17]. After
passing through the gas cell, the attenuated photon signal was recorded on a photographic plate
and read out by densitometer. Later on, these measurements were replaced by the ion current
measurements if the incoming photon energy was above the first ionisation threshold. He+ ions
produced by the light were collected by a two parallel plate arrangement with the bias potential
of few tens of volts [5].

Historically, the Stark effect was investigated by observing fluorescence from discharge sources
[34], which were improved to reach the field strengths of over 1000 kV/cm [65]. For experiments
in which the excitation step needs to be controlled, discharge sources are unsuitable, and the
field is usually applied using two parallel plates. There is a large literature on studies of laser
photoexcitation in an electric field, for example [66–68]. Such experiments reach field strengths
of up to around 150 kV/cm, and achieve very high energy resolution, but they are limited to the
region around the first ionisation thresholds due to the status of the present laser technology. In
the important case of hydrogen, a two step laser excitation has been used to reach the ionisation
threshold [69]. Extremely high effective field strengths of up to 2500 kV/cm can be obtained
by making use of the fact that a relatively small static magnetic field in the laboratory frame
can be experienced as a very large static electric field in the rest frame of relativistic particles
[70]. These experiments aim to study situations which are out the focus of our work. We are
interested in modelling the photoion and fluorescence signals in energy regions where the states
and fields effects can still be reasonably well resolved by the presently available energy resolution
of VUV beamlines which is of the order of 1 meV.

Figure 2.3: The experimental setup of Harries et al. [44] for measuring the yield of photoions in
high electric fields.
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Although one may argue that the above mentioned zero field photoionisation experiments
were in fact done in a very weak electric field, this subject was thoroughly studied only recently.
Harries et al. built an apparatus by which they were able to collect ion signal from the gas at
very high fields, up to 120 kV/cm [71]. The experiment was performed at synchrotron undulator
beamlines BL-16B of the Photon Factory (Tsukuba) and BL 10.0.1 of the Advanced Light Source
(Berkeley, CA).

Two electrodes made from high grade stainless steel with a low carbon content are separated
by 1 cm (variable). They straddle the interaction region. High voltage is applied to one of
the plates, and the other plate is grounded (Fig. 2.3). The electrodes were carefully polished
with a diamond paste to a smooth finish, and have edges rounded to 2 mm radius. In order
to detect the photoions, the earthed electrode has a slit, behind which a microchannel plate
(MCP) detector assembly is placed (labelled MCP1 in Fig. 2.3). A further detector assembly,
labelled MCP2, is placed above the electrodes, and is sensitive to neutral particles, namely VUV
photons with energies above around 10 eV and long lived excited neutral atoms (metastables
with internal energy of above around 10 eV). Another detector, labelled MCP3, is placed in
a separate vacuum chamber and is set up in such a way that zero field spectra (detecting
either photoions or neutral particles) can be recorded simultaneously with the in-field spectra
in the main chamber. Each in-field spectrum can be immediately calibrated in photon energy
relative to the zero field spectrum. The geometry of the apparatus is fixed, so with standard
synchrotron source beamlines that deliver light with a linear polarisation in the horizontal plane
they were limited to studying the effects of an electric field parallel to the polarisation vector of
the incoming radiation.

One of the main issues involved was calibration of the electric field strength. The effective
plate separation, which differs from the actual one due to the effect of the slit and of the edges,
was determined by measuring the shift in N = 1 ionisation potential of He as a function of
voltage V applied to the high voltage electrode. This was done by recording the ion yield by
MCP1. Classically, in units of kV/cm and meV the shift in IP is given by ∆IP = 24

√

V/deff . The
fit to the results showed that the effective plate separation is deff = 0.845 cm. The calibration
procedure for MCP2 detector consisted of measuring the fluorescence yield from photoexcited
Rydberg states below N = 1. The modelled spectrum fitted well the spectrum recorded in the
region of n = 6 − 8 manifold of states if deff = 0.9 cm.

Figure 2.4: The experimental setup of Penent et al. [9, 21, 26] for detecting the yield of VUV
photon and metastable atoms in low electric fields.
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Setup for measuring VUV photon yield in weak fields (up to about 10 kV/cm) is actually
quite simple, as shown in Fig. 2.4. The advanced version of the apparatus, which was installed
at the Gasphase beamline at synchrotron Elettra (Trieste), can be rotated around direction of
the incoming photon beam and allows the measurements in both geometries, with electric field
vector parallel or perpendicular to the polarisation of the incoming light [72]. The lower electrode
is grounded and has a hole for the needle tip through which the gas leaks into the target region.
The upper electrode with non zero potential has a grid opening to allow particles to exit toward
the upper MCP. This is equipped by additional two grids, which are able to prevent electrons and
ions from hitting the MCP front surface if properly biased. The side MCP also has two grids and
a mask to restrict its field of view to the interaction region. A similar setup is used by two other
research groups which recently investigated the fluorescence yield in the field. Rubensson et al.
[10] installed an additional thin aluminium filter in front of the MCP to discriminate between
the primary (≈ 40 eV) and secondary fluorescence (photon energy is bellow 24 eV). Coreno
et al. [24] used a scintillator crystal (YAG) to convert VUV photons into the visible photons
with 10% efficiency. Visible photons are counted by the standard photomultiplier. Dispersion
grating spectrometers were also used to study in detail the energy distribution of the primary
[22, 23] and secondary fluorescence [73]. The data, especially in the former case, are acquired
tremendously slow due to very low collection efficiency.

Figure 2.5: The time histograms recorded just above the N = 2 threshold (a) and below the
threshold on the resonance 3c 1P o [27]. The full line represents the instrumental time broadening.

A setup similar to the one shown in Fig. 2.4 was used to study fluorescence in the time
domain (Fig. 2.5). In this case the time difference is measured by time-to-amplitude converter
(TAC) between START given by a detected VUV photon and a delayed STOP which marks the
arrival time of the incoming light pulse. The time jitter introduced by combination of MCP,
preamplifier, constant fraction discriminator, and TAC is of the order of 80 ps, allowing the
measurements of lifetimes which are longer than few tens of ps. The instrumental function is
measured by recording time histograms of the incoming photons which are elastically scattered
of the needle tip (movable) toward the detector [27], or by taking the fluorescence signal from a
very short lived resonance with the lifetime below 1 ps [29].
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Perturbative treatment

At the beginning, we investigate the simplest possible approach to quantify the fluorescence yield
from doubly excited states in the electric field – the first order perturbation. As it was shown
long ago by Lipsky et al. [37], in the zero field and below the N = 2, 3 ionisation thresholds,
the low lying doubly excited states (n < 8) can be adequately described by a CI basis set of
moderate size (approximately 50 configurations for each LSπ symmetry). One can then calculate
the oscillator strengths for the ground state photoexcitation, and also the autoionisation and
fluorescence decay probability of doubly excited states [20]. This is sufficient to estimate the
primary and the secondary fluorescence yields for comparison with the experimental data [18],
but not enough to predict the yield of photoions, since the coupling of bound states to continuum
is entirely neglected.

Very recent VUV photon yield measurements from helium doubly excited states in a weak
electric field of the order of few kV/cm indicated the presence of the signal from previously
unobserved higher members of 1De and 1P e series with n ranging from 6 − 10 [47]. Since
this observation concerns the fluorescence channel, it may be possible to explain it within the
standard CI approach. To this purpose, we have extended the CI basis set to obtain reliable
description of the zero order (zero field) doubly excited states up to n = 10. These states were
then employed to compute the states perturbed by the field and, further on, to estimate primary
fluorescence yields from these states. It comes out that the first order perturbation scheme may
be applied to the problem up to n = 10 for a particular experimental geometry if the electric
field strength F is not larger than approximately 5 kV/cm [74].

3.1 First order perturbation

Due to the non zero electric field, the dipole allowed 1P o zero order states are mixed into the
1Se, 1P e, and 1De zero order states. The first order even singlet state with the projection M of
the angular momentum L is given by

|ψi
1Le, M〉1 ≈ |ψi

1Le, M〉 +
∑

j

aij(M)|ψj
1P o, M〉 + . . . , (3.1)

where the sum over j runs over all 1P o resonances and index i counts the resonances within the
same 1Le series according to the increasing energy. Only L = 0, 1, 2 and M = ±1, 0 contribute
with the non zero expansion coefficients aij ; selecting z axis along the electric field direction,
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the coefficients are expressed as

aij(M) = −F (−1)1−M

(

1 1 L
−M 0 M

) 〈ψj
1P o‖D‖ψi

1Le〉
Ei − Ej

, (3.2)

where the reduced dipole operator in the length form is expressed by D = r1C
1(r̂1) + r2C

1(r̂2).
C1 is the reduced spherical tensor of rank one [75]. Note that aij(0) = 0 for 1P e states and
aij(±1) = 0 for 1Se states. The two electron reduced matrix elements and state energies Ei were
calculated by the ATSP codes [52]. The same package was employed to obtain CI expansions
of the zero order 1Se, 1P e, 1De, and 1P o states. Non relativistic Hamiltonian for helium was
diagonalised in the basis of hydrogen-like (Z = 2) two electron LS coupled configurations,
including electron orbitals with n ≤ 15 and l ≤ 4,

|ψi
1Lπ〉 =

∑

n1,n2

l1,l2

cn1n2l1l2
i |n1l1n2l2

1Lπ〉 . (3.3)

This was sufficient to obtain reliable representation of states up to n = 10 for each of the four
LS symmetries investigated, which extends the range of calculations of [20, 37] without further
loss of precision. Note that the first order Stark energy correction of all these states is zero,
and the energy shift of the resonances in the weak electric field can be safely neglected for the
present purpose. As mentioned, in the absence of good quantum numbers we prefer to denote
different series by letters in order of appearance as in [37, 44], but keep the LS notation which
is still not excessively violated in the weak fields. There are 3 series (a, b, c) with 1P o and 1De

symmetry, 2 series (a, b) with 1Se symmetry, and a single 1P e a series converging to the N = 2
threshold. The translation to (K, T )A approximate correlation quantum numbers for each series
is straightforward [60].

The photoabsorption cross section of even states depends on the orientation of the polarisa-
tion vector P of the incoming light with respect to the electric field direction. For perpendicular
and parallel orientation, the length form yields

σ
⊥,‖
i =

4

3
π2αEi

∣

∣

∣

∣

∑

j

aij(1, 0)〈ψj
1P o‖D‖ψg

1Se〉
∣

∣

∣

∣

2

, (3.4)

where |ψg
1Se〉 is the helium ground state wavefunction, represented by 21-term MCHF expansion

[52], and Ei is the energy of doubly excited state above the ground state. Obviously, there is
no photoexcitation of 1Se states in perpendicular orientation and there is no photoexcitation
of 1P e states in parallel orientation because the corresponding coefficients in Eq. (3.4) vanish
identically. The even states are therefore aligned by the photoexcitation process in the presence
of weak electric field, whereas the alignment of 1P o states is still negligible. Under the same

circumstances, σ⊥
i = 3

4σ
‖
i for 1De states.

We note that at 5 kV/cm first order perturbation scheme cannot fully describe the 1Se - 1P o

coupling. Specifically, choosing a2
ij < 0.1 as a validity criterion, this is not fulfilled for pairs of

states (n + 1)b - nb, (n + 3)a - (n + 3)b and (n + 1)b - (n + 1)c for n > 4. The electric field
should remain below 2 kV/cm to obtain valid mixing coefficients up to n = 10. For this reason,
but also because the calculated energy separation between 1Se na, 1Se (n − 1)b, 1P o nb and 1P o

(n − 1)c states is similar to the error in calculated energy positions which introduces further
uncertainty of the coefficient values, it has no sense to report the results for 1Se and 1P o series
in the non zero field with parallel orientation F ‖ P . On the other hand, there are no problems
in this respect with 1De - 1P o and 1P e - 1P o coupling for n ≤ 10, unless F > 5 kV/cm.
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The zero field data for n = 8 [20] allow to estimate the absolute square of the spin-orbit
coupling coefficient of the 1P o states by using the n6 extrapolation [18]. The strongest spin-
orbit coupling appears between 10a 1P o and 10a 3Do state, and reaches approximately 6% of
the absolute square of the largest Stark mixing coefficients [Eq. (3.2)] at 5 kV/cm. Then,
by magnitude, the spin orbit coupling is roughly comparable to the Stark coupling at about
1 kV/cm and produces only small effects in the primary fluorescence spectrum for low lying
doubly excited states. Both perturbations are practically decoupled for n ≤ 10 and the field
strengths under consideration.

To generate primary fluorescence yields we need to estimate autoionisation decay rates Γ of
doubly excited states into the only accessible He+(1s) continuum. For the first order states,

Γi(
1Le)

2π
= |Ai(

1Le)|2 +











∣

∣

∣

∑

j aij(1)Aj(
1P o)

∣

∣

∣

2
, F ⊥ P

∣

∣

∣

∑

j aij(0)Aj(
1P o)

∣

∣

∣

2
, F ‖ P

(3.5)

Γi(
1P o)

2π
= |Ai(

1P o)|2 +
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j aji(1)Aj(
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∣
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2
, F ⊥ P

1
3

∑

L=S,D

∣

∣

∣

∑

j aji(0)Aj(
1Le)

∣

∣

∣

2
, F ‖ P

(3.6)

The matrix elements Aj of electron-electron Coulomb repulsion between the zero order states
(3.3) are obtained by the standard technique [53]. Explicitly, they are given by

Ai(
1Se) =

∑

n1,n2,l

cn1n2ll
i

{

1

2−1/2

}

(−1)l

√

[l]

[

Rl(1s ǫis, n1l n2l) + Rl(ǫis1s, n1l n2l)

]

,

Ai(
1P o) =

∑

n1,n2,l

c
n1n2l(l+1)
i (−1)l

√
l + 1

[

Rl(1s ǫip, n1l n2(l + 1))

[l]

+
Rl+1(ǫip 1s, n1l n2(l + 1))

[l + 1]

]

,

Ai(
1De) =

∑

n1,n2,l,l′

cn1n2ll′

i

{

1

2−1/2

} (

2 l l′

0 0 0

)

[
√

[l′]

[l]
Rl(1s ǫid, n1l n2l

′)

+

√

[l]

[l′]
Rl′(ǫid 1s, n1l n2l

′)

]

.

(3.7)

In Eq. (3.7), a shorthand notation [l] = 2l + 1 has been introduced. The upper and lower
normalisation constant in curly braces are used for non equivalent and equivalent electrons,
respectively. The continuum waves ǫil of the ejected electron were calculated in He+ 1s potential
by the GRASP code [76, 77]. For each resonance, ǫi equals Ei−E(He+ 1s), as required by energy
conservation. Slater two dimensional radial integrals are denoted by Rl [53].

Finally, for each resonance we have calculated fluorescence decay rates into the dipole allowed
singly excited atomic states |ψs

1L′π〉 and with principal quantum number n ≤ 12 and total
angular momentum L′ ≤ 3. These states are again described by MCHF expansion. The primary
fluorescence rate from the i-th resonance state in the zero electric field is given by γi =

∑

s γis,
where

γis =
4[α(Ei − Es)]

3

3(2L + 1)
|〈ψs

1L′π+1‖D‖ψi
1Lπ〉|2 . (3.8)

In Eq. (3.8), Es denotes the energy of the singly excited state |ψs
1L′π+1〉.
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State Ei f Γ0 ∆Γ γs γd γ FY
F [kV/cm] 0 0 0 5 ⊥ 0 0 0 5 ⊥

1P o [eV] [ns−1] [ns−1] [ns−1] [ns−1] [ns−1]

(0, 1)+ 2a 60.271 6.64−3 5.68+4 8.84−5 6.75+0 2.96-1 7.05+0 8.23−7
3a 63.689 1.05−3 1.21+4 9.33−4 5.75+0 1.51+0 7.26+0 6.30−7
4a 64.480 4.24−4 5.17+3 3.63−4 5.71+0 1.77+0 7.48+0 6.13−7
5a 64.824 2.13−4 2.65+3 4.79−4 5.73+0 1.87+0 7.60+0 6.09−7
6a 65.005 1.22−4 1.53+3 1.13−2 5.75+0 1.92+0 7.67+0 6.08−7
7a 65.113 7.61−5 9.65+2 6.29−2 5.77+0 1.94+0 7.71+0 6.03−7
8a 65.182 5.07−5 6.45+2 2.24−1 5.78+0 1.96+0 7.74+0 6.01−7
9a 65.229 3.55−5 4.52+2 6.37−1 5.79+0 1.97+0 7.76+0 5.98−7

10a 65.262 2.59−5 3.30+2 1.69+0 5.79+0 1.97+0 7.77+0 5.92−7

(1, 0)− 3b 62.774 2.45−5 2.01+2 2.02−4 4.70+0 6.05-1 5.30+0 6.29−7
4b 64.144 2.13−5 1.25+2 3.64−3 3.56+0 4.25+0 7.81+0 1.25−6
5b 64.664 1.07−5 6.35+1 2.87−2 3.62+0 4.43+0 8.05+0 1.20−6
6b 64.917 5.94−6 3.52+1 1.37−1 3.65+0 4.55+0 8.20+0 1.12−6
7b 65.059 3.60−6 2.13+1 4.82−1 3.66+0 4.63+0 8.29+0 9.92−7
8b 65.147 2.34−6 1.38+1 1.39+0 3.66+0 4.69+0 8.35+0 8.30−7
9b 65.205 1.60−6 9.48+0 3.46+0 3.66+0 4.73+0 8.39+0 6.29−7

10b 65.245 1.14−6 6.76+0 7.55+0 3.63+0 4.74+0 8.37+0 4.21−7

(−1, 0)0 3c 64.128 2.53−6 1.81−1 7.81−4 8.96−1 4.10+0 4.99+0 2.44−6
4c 64.655 2.05−6 4.72−1 5.41−3 6.34−1 3.69+0 4.33+0 1.84−6
5c 64.912 1.33−6 3.56−1 2.47−2 5.16−1 3.49+0 4.00+0 1.21−6
6c 65.056 8.65−7 2.37−1 8.62−2 4.55−1 3.35+0 3.81+0 7.97−7
7c 65.145 5.83−7 1.59−1 2.49−1 4.18−1 3.26+0 3.68+0 5.50−7
8c 65.203 4.07−7 1.00−1 6.23−1 3.94−1 3.19+0 3.58+0 3.38−7
9c 65.244 2.94−7 7.83−2 1.36+0 3.75−1 3.14+0 3.51+0 2.08−7

Table 3.1: The eigenenergies Ei, oscillator strengths f (length form), autoionisation Γ0 and
fluorescence rates γ = γs + γd (velocity form) for 1P o states in zero electric field. Given are also
corrections ∆Γ to autoionisation decay rate in DC electric field of 5 kV/cm (F ⊥ P ) and the
fluorescence yield FY.
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State Ei f Γ0 ∆Γ γp γf γ FY
F [kV/cm] 0 5 ‖ 0 5 ‖ 0 0 0 5 ‖

1De [eV] [ns−1] [ns−1] [ns−1] [ns−1] [ns−1]

(1, 0)+ 2a 60.022 7.4−12 1.22+5 4.42−4 4.04-1 4.94−5 4.04−1 2.4−17
3a 63.558 1.8−10 2.82+4 4.66−3 6.44+0 8.61−2 6.52+0 4.2−14
4a 64.421 0.63−9 1.18+4 1.68−3 6.07+0 2.24−1 6.30+0 3.4−13
5a 64.793 2.09−9 6.00+3 2.39−3 5.87+0 3.07−1 6.18+0 2.1−12
6a 64.987 6.10−9 3.43+3 5.70−2 5.76+0 3.58−1 6.12+0 1.1−11
7a 65.101 1.59−8 2.14+3 3.15−1 5.68+0 3.90−1 6.07+0 4.5−11
8a 65.174 3.73−8 1.42+3 1.12+0 5.63+0 4.11−1 6.04+0 1.6−10
9a 65.224 8.00−8 9.91+2 3.18+0 5.58+0 4.26−1 6.01+0 4.8−10

10a 65.259 1.31−7 7.19+2 8.50+0 5.53+0 4.35−1 5.96+0 1.06−9

(0, 1)0 3b 63.874 5.0−10 1.09+3 1.01−3 3.13+0 7.13−1 3.84+0 1.7−12
4b 64.549 5.90−9 6.06+2 1.82−2 3.72+0 7.00−1 4.42+0 4.3−11
5b 64.857 3.33−8 3.46+2 1.43−1 3.97+0 6.90−1 4.66+0 4.4−10
6b 65.024 1.30−7 2.11+2 6.85−1 4.11+0 6.87−1 4.80+0 2.88−9
7b 65.125 4.01−7 1.37+2 2.41+0 4.19+0 6.87−1 4.88+0 1.35−8
8b 65.190 1.05−6 9.39+1 6.95+0 4.25+0 6.87−1 4.94+0 4.90−8
9b 65.234 2.40−6 6.68+1 1.73+1 4.29+0 6.88−1 4.97+0 1.34−7

10b 65.266 4.74−6 4.94+1 3.77+1 4.31+0 6.83−1 4.99+0 2.57−7

(−1, 0)0 4c 64.606 4.8−10 4.66−1 3.90−3 5.10-2 8.89+0 8.94+0 4.6−10
5c 64.886 3.51−9 4.80−1 2.70−2 3.41-2 8.86+0 8.90+0 3.32−9
6c 65.040 1.50−8 3.81−1 1.23−1 2.46-2 8.85+0 8.88+0 1.42−8
7c 65.135 4.83−8 2.87−1 4.31−1 1.88-2 8.84+0 8.86+0 4.66−8
8c 65.197 1.29−7 2.15−1 1.25+0 1.49-2 8.84+0 8.85+0 1.11−7
9c 65.239 3.03−7 1.62−1 3.11+0 1.22-2 8.83+0 8.84+0 2.21−7

Table 3.2: The eigenenergies Ei, autoionisation Γ0 and fluorescence decay rates γ = γp + γf

(velocity form) for 1De series in zero electric field. Given are also oscillator strengths f (length
form) and corrections ∆Γ to the autoionisation rate for DC electric field of 5 kV/cm (F ‖ P )
and the fluorescence yield FY.
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State Ei f ∆Γ γ FY
F [kV/cm] 0 5 ⊥ 5 ⊥ 0 5 ⊥

1P e [eV] [ns−1] [ns−1]

(0, 1)− 3a 63.230 5.39−11 6.04−4 1.05+1 5.39−11
4a 64.318 8.19−10 1.03−2 1.00+1 8.11−10
5a 64.747 5.38−9 7.08−2 9.84+0 5.34−9
6a 64.963 2.31−8 3.10−1 9.77+0 2.24−8
7a 65.087 7.66−8 1.03+0 9.74+0 6.93−8
8a 65.165 2.12−7 2.88+0 9.70+0 1.63−7
9a 65.217 5.15−7 7.02+0 9.65+0 2.98−7

10a 65.254 1.15−6 1.54+1 9.58+0 4.41−7

State Ei Γ0 γ
F [kV/cm] 0 0 0

1Se [eV] [ns−1] [ns−1]

(1, 0)+ 2a 57.909 2.18+5 6.09-2
3a 63.001 7.04+4 3.63+0
4a 64.203 2.50+4 4.80+0
5a 64.688 1.08+4 5.75+0
6a 64.929 5.47+3 6.40+0
7a 65.066 3.12+3 6.83+0
8a 65.151 1.94+3 7.12+0
9a 65.208 1.28+3 7.30+0

10a 65.247 8.94+2 7.41+0

(−1, 0)+ 2b 62.256 2.37+4 8.22-1
3b 64.122 8.38+3 4.53+0
4b 64.660 4.99+3 3.81+0
5b 64.917 3.13+3 3.24+0
6b 65.059 2.06+3 2.85+0
7b 65.147 1.41+3 2.57+0
8b 65.205 1.01+3 2.37+0
9b 65.245 7.38+2 2.22+0

10b 65.274 5.50+2 2.34+0

Table 3.3: Oscillator strengths f (length form) and corrections ∆Γ to the autoionisation rate for
1P e series in electric field of 5 kV/cm (F ⊥ P ). Given are also eigenenergies Ei, autoionisation
Γ0 and fluorescence decay rates γ (velocity form) in zero field for 1P e and 1Se series. FY is the
fluorescence yield.
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3.2 Results

In Tables 3.1-3.3 above, we report the resonance oscillator strengths fi = σi/(2π2α). The 1P o

oscillator strengths remain basically unchanged from their zero field values at F = 5 kV/cm,
while for even resonances they increase in proportion to F 2. The autoionisation decay rates Γ0
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Figure 3.1: Partial fluorescence decay rates of the nine resonant states below N = 2 into the
singly excited states 1snl in helium.

in the zero electric field are represented by the first term on the right of Eqs. (3.6) and (3.5).
They are given in Tables 3.1-3.3 together with corrections ∆Γ to the autoionisation rate at 5
kV/cm used to obtain the total autoionisation rate Γ = Γ0 + ∆Γ in the non zero field. For
pure LS states below the N = 2 threshold, the autoionisation is forbidden for resonances with
(−1)L+1 parity. Therefore, the autoionisation of 1P e states in weak electric fields is driven solely
by the small admixture of the strongly ionising 1P o states represented by the first order term ∆Γ
in Eq. (3.6); we have neglected the admixture of weakly autoionising 1Do states (according to
[60], quantum number A = 0 for these states). For 1De a states, the zero field autoionisation rate
is large so that it is not changed substantially by the first order admixture of 1P o states. The
same is true for 1P o a states: their autoionisation rates are essentially not modified by the weak
electric field, so that Γ ≈ Γ0. On the contrary, 1P o b and especially 1P o c states display very
small zero order autoionisation rate which can be largely modified by the presence of the field,
i.e., small admixtures of strongly autoionising even parity states represented by the summation
term in Eq. (3.5) dominantly contribute to the autoionisation decay rate of high series members,
so that Γ ≈ ∆Γ(F ). We have calculated the correction only for F ⊥ P due to the quantitatively
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uncertain but qualitatively similar effect of strongly autoionising 1Se states at 5 kV/cm in the
parallel orientation (Table 3.1). Similar holds for 1De b and c series: their autoionisation rates
are considerably changed by the admixture of 1P o states. Note that corrections ∆Γ for F ⊥ P

are obtained when the corresponding values from Table 3.2 are multiplied by 3/4. Note also
that ∆Γ scales with F 2. The effect of these corrections is to produce the observed nonlinear
dependence of the VUV fluorescence yield on the electric field strength [47].

Figure 3.2: Comparison of the experimental VUV photon yield and calculated primary fluores-
cence yields from the 1P o state (green line) and 1P e, 1De states (red and blue line) perturbed by
the electric field of 5 kV/cm (F ⊥ P ).

Since the zero field fluorescence rates γi (Tables 3.1-3.3) are of the same order of magnitude
for all the studied symmetries, their values in the non-zero field are almost unaffected by the
small first order perturbation admixtures, either in the initial or the final state. While for
1Se and 1P e states there exists a single primary fluorescence decay mode, 1Se → 1P o + γ and
1P e → 1P o + γ, respectively, there are two modes in the case of 1P o and 1De resonances:

γs : 1P o → 1Se + γ and γd : 1P o → 1De + γ ,

γp : 1De → 1P o + γ and γf : 1De → 1F o + γ .
(3.9)

These partial rates are also reported in Tables 3.1-3.2. The length and velocity form results
disagree at most for 10% for n = 2 resonances and agree much better at higher n. For n = 7
states of nine resonant series considered here, we present partial fluorescence rates into the
allowed singly excited atomic states in Fig. 3.2. We can see that except for the 1P o b and 1Se a
type of resonances, all the transitions are mainly vertical, i.e., the inner electron makes transition
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from L to K shell in the presence of spectator electron in the outer atomic shell. Also, 1De c
series mainly decays to 1snf states while a,b states of the same symmetry most likely fluoresce
into 1snp states.

The data presented in Tables 3.1-3.3 estimate the total primary fluorescence yield

FY = f
γ

γ + Γ
(3.10)

from resonances in the weak electric field. This is helpful to explain recent experimental observa-
tions [47]. The comparison with calculated FY is presented in Fig. 3.2 for the field strength of 5
kV/cm. FY reproduces well the newly observed photon yield of 1P e resonances. The calculated
contribution of two out of three 1De series seems to be important at the high energy side of the
principal series a, but their intensities are not large enough so that there may be some other
states contributing to the yield in that energy region.

According to our first order calculations, it is expected that 1P e states are the strongest dark
source of photons. For example, at n = 10 the total primary fluorescence yield from 1P e 10a
state at 5 kV/cm already amounts to 74% of the yield from the dipole allowed 1P o 10a state;
the fluorescence signals from both states should display comparable intensity in PIFS spectra
when the electric field is perpendicular to the polarisation of the incoming light. On the other
hand, under the same circumstances the fluorescence signal from the dipole allowed 1P o 10b and
1P o 10c state is expected to decrease to 66% and 72% of the zero field signal, respectively.

We could only partially confirm the experimental observations. The first order calculations
cannot tell anything reliable about the data collected for F ‖ P , although it appears that the
reduced fluorescence yield of the 1P o (n − 1)c - nb doublet is due to the mixing with strongly
autoionising 1Se series. To resolve these question and answer to some others, we should be
able to work out the non perturbative model, which will achieve higher accuracy and allow the
considerations of fluorescence yield and ion yield spectra at much higher electric fields and for
both experimental geometries.
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Chapter 4

Non perturbative treatment

4.1 Two electron Coulomb Sturmian functions

For a reliable description of singly and doubly excited states of the helium atom in the homo-
geneous electric field, accurate wavefunctions of the atomic eigenstates are needed. Suitable
basis is to be chosen that allows a good representation of the wavefunctions both at small radial
distances from the nucleus r, where the Coulomb potential is dominant, but also at large dis-
tances, where the effect of the electric field is more pronounced. Accurate wavefunctions close to
the nucleus are also required because it is expected that the overlap between doubly and singly
excited state wavefunctions is considerable in this region.

Basis functions commonly used in problems that involve Coulomb potential are the Coulomb
Sturmian functions [78]. The single electron Coulomb Sturmian functions are the solutions of
the Sturm-Liouville problem

[

−1

2

d2

dr2
+

1

2

l(l + 1)

r2
− nk

r
+

k2

2

]

Sk
nl(r) = 0 , (4.1)

Sk
nl(0) = 0 and Sk

nl(r)
r→∞−−−→ 0 , (4.2)

and subject to a rather unusual normalisation condition involving a 1/r weight:

∫ ∞

0
drSk

nl(r)
1

r
Sk

n′l(r) = δnn′ . (4.3)

It should be noted that the normalisation plays no role when two electron wavefunctions are
constructed from the single electron wavefunctions since the resultant two electron wavefunctions
are nonorthogonal. Eq. (4.3) is therefore written merely for completeness. It should be noted
that the total single electron wavefunction (omitting the spin part) is written as

ψk
nlm(r) =

Sk
nl(r)

r
Ylm(θ, φ) . (4.4)

The functions satisfying Eqs. (4.2) and (4.3) are [78, 79]

Sk
nl(r) =

√

(n − l − 1)!

(n + l)!
e−kr(2kr)l+1L2l+1

n−l−1(2kr) , (4.5)

where Lα
n(x) denotes an associated Laguerre polynomial [80]. For k = Z/n, the Sturmian

function Sk
nl(r) represents, up to a normalisation constant, a solution of a hydrogen-like atom

39
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of nuclear charge Z. As can be shown for a fixed parameter k, the Coulomb Sturmian functions
form a complete set [78].

The simplest generalisation of the latter results to the case of two electrons is by writing two
electron basis functions as a linear combination of products of single electron wavefunctions,

Sk
nl(r1)

r1
Ylm(r̂1)χms(σ1) · Sκ

νλ(r2)

r2
Yλµ(r̂2)χµs(σ2) , (4.6)

where Ylm(θ, φ) = Ylm(r̂) = 〈r̂|lm〉 are the usual spherical harmonics [13, 53] and χms(σ) =
〈σ|ms〉 = δms,σ spin wavefunctions [13]. If the normalisation constant is disregarded, the anti-
symmetrised LS coupled two electron basis function for a given electron configuration nlνλ and
fixed nonlinear parameters k and κ is equal to [cf. Eq. (2.7)]

ψknlκνλ
LMSMS

(q1, q2) =
Sk

nl(r1)

r1

Sκ
νλ(r2)

r2
Υlλ

LMSMS
(r̂1, σ1, r̂2, σ2)

+ (−1)L+S+l+λ Sκ
νλ(r1)

r1

Sk
nl(r2)

r2
Υλl

LMSMS
(r̂1, σ1, r̂2, σ2) , (4.7)

where Υlλ
LMSMS

(r̂1, σ1, r̂2, σ2) is the coupled spin orbital part:

Υlλ
LMSMS

(r̂1, σ1, r̂2, σ2) =
∑

m,µ
ms,µs

(lmλµ|LM)(1/2 ms1/2 µs|SMS) ·

· Ylm(r̂1)Yλµ(r̂2)χms(σ1)χµs(σ2) .

(4.8)

The functions from Eq. (4.7) are not normalised to unity. As mentioned earlier, the functions
with different nlνλ and/or different scaling parameters (k, κ) are in general not orthogonal.

Often, the nonlinear scaling parameters are chosen equal (k = κ) since the integrals involved
in the calculation of the matrix elements of the Hamiltonian can then be simplified by the use
of the recursion and orthogonality formulas for the Laguerre polynomials [80]. In that case, the
matrix elements of the Hamilton operator are subject to strict selection rules (i.e., many of the
elements are zero) and the matrices involved in the eigenvalue problem are sparse band diagonal
(e.g., cf. Ref. [81]).

In the case of equal scaling parameters, however, a large basis set is needed to accurately
describe high lying states of a Rydberg series converging to a specified ionisation threshold. This
stems from the fact that such high asymmetrically excited atomic states [82] are characterised
by two different radial scales attributed to the motion of the two electrons: on the average,
the electrons move far away from each other. A suitable basis should therefore account for this
radial asymmetry by spanning the two radial regions simultaneously. If the basis functions from
Eq. (4.7) are used, this is achieved by assigning two distinct values to k and κ. This choice
means, however, that the computation of the matrix elements becomes more demanding since
the orthogonality relations of the Laguerre polynomials cannot be used and the integration has
to be carried out numerically.

In choosing the suitable nonlinear scaling parameters, we follow the method of Lagmago
Kamta et al. [82]. Only a short overview is given here, whereas the reader should refer to Ref.
[82] and Chapter 5 for details. The solutions of the Schrödinger equation are written as a CI
expansion over the Sturmian basis functions as

Ψ(q1, q2) =
∑

s

∑

l,λ

∑

n,ν

xksnlκsνλ
LMSMS

ψksnlκsνλ
LMSMS

(q1, q2) , (4.9)
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with n = l+1, . . . , l+∆nls and ν = λ+1, . . . , λ+∆νλs. Note that besides the usual CI expansion
involving different pairs of orbital momenta (l, λ), several sets of scaling parameters (ks, κs) are
used in Eq. (4.9). Since the parameters ks, κs, n, and ν all influence the radial spread of the
wavefunction, ks, κs, ∆nls, and ∆νλs are adjusted in such a manner to increase the number of
Sturmian functions simultaneously describing the radial regions of both electrons. The values
of ks and κs are chosen as follows. The Sturmian function Sk

nl(r) describes an electron with the
energy

E = −k2

2
= − Z2

2n2
(4.10)

moving in the Coulomb potential of nuclear charge Z. In the case of two electrons characterised
by quantum numbers n and ν, the nuclear charge that affects the motion of the electron is
screened by the charge of the additional electron, thus Z should be replaced by the effective
charge Z − σ, where 0 < σ ≤ 1. The parameters k and κ are set to

k =
Z − σk

n
and κ =

Z − σκ

ν
. (4.11)

The number of Sturmian functions ∆nls and ∆νλs in Eq. (4.9) depends on the values of ks

and κs. It should be noted that using distinct values for ks and κs can reduce the basis size
substantially for asymmetrically excited states since the number of Sturmian functions in the
expansion ∆nls and ∆νλs need not be equal and since the electron movement becomes less
correlated and thus fewer angular configurations are needed for a reliable description.

The usual variational approach involves optimisation of the nonlinear parameters of the
basis functions prior to diagonalisation. In this way, accurate energies and wavefunctions for
a chosen atomic state or a group of close lying states can be obtained. Rather than seeking
optimal parameters for each of the states, the convergence is achieved by including several pairs
of scaling parameters (ks, κs) in Eq. (4.9) that cover the range of suitable values. On the expense
of the larger basis size, the eigenstates and eigenenergies are obtained simultaneously, in a single

diagonalisation. This is particularly important since for an adequate description of the helium
atom in the external electric field, the higher angular momenta L could also become relevant,
and a large number of states would thus have to be optimised.

In Chapter 5 we describe in detail the basis parameters used in the calculation of the singly
and doubly excited states of the helium atom below the second (N = 2) ionisation threshold,
for angular momenta L ≤ 10 and principal quantum numbers n ≤ 15.

4.2 Hamilton operator in Sturmian basis

The most transparent way of studying the effects of the external electric field strength on the
eigenstates of the system is by expanding the eigenstates of the total Hamiltonian H in the
basis of the free atom eigenstates. If the solution |Ψi〉 of the field free eigenvalue problem with
eigenenergy Ei,

H0|Ψi〉 = Ei|Ψi〉 , (4.12)

is expanded in the basis of Coulomb Sturmian functions 〈q1, q2|ψγ〉,

|Ψi〉 =
∑

γ

xi,γ |ψγ〉 , (4.13)

one obtains a generalised eigenvalue problem

H0 xi = Ei Bxi , (4.14)
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with
H0,βγ = 〈ψβ|H0|ψγ〉 and Bβγ = 〈ψβ |ψγ〉 . (4.15)

The Greek indices were used as a shorthand notation for the set of quantum numbers

(knl, κνλ, LMSMS) . (4.16)

Since the basis is real, the matrix H0 from Eq. (4.14) is real symmetric and the overlap matrix
B is real symmetric positive definite. The ortho-normalisation condition

〈Ψi|Ψj〉 = δij (4.17)

leads to the normalisation equation for the column vectors xi:

x
†
i Bxj = δij . (4.18)

Once the field free solutions are obtained, the eigenvalues Ep and the eigenstates |Φp〉 of the
total Hamilton operator H,

H|Φp〉 = Ep|Φp〉 , (4.19)

are sought by the expansion

|Φp〉 =
∑

j

yp,j |Ψj〉 . (4.20)

Eqs. (4.19), (4.20), and the normalisation requirement for the eigenstates of the full Hamiltonian

〈Φp|Φq〉 = y†p yq = δpq (4.21)

then lead to the equation
(A + B) yp = Ep yp . (4.22)

The matrices A and B in Eq. (4.22) are given by

Aij = Ei δij and Bij = 〈Ψi|∆H|Ψj〉 . (4.23)

The key advantage of using the expansion (4.20) is that only the eigenstates |Ψi〉 for which the
coupling through ∆H is strongest in the specified energy region can be included in the sum. This
can drastically reduce the size of the matrices involved and thus allows higher angular momenta
to be included in the calculation. The drawback of the expansion over the unperturbed states
is, however, that an additional diagonalisation (or, more precisely, an additional diagonalisation
for every symmetry LS and parity π) is required. As already mentioned, more details on the
numerical treatment of the problem will be given in Chapter 5.

In the following, only the outline of the ab inito treatment is given, whereas the detailed
derivations of matrix elements of the Hamilton operator in Sturmian basis are gathered in
Appendix B, and the numerical implementation of the problem is described in Chapter 5.

4.3 The method of complex scaling

In the energy region of doubly excited states, the eigenstates of the Hamiltonian are represented
by a superposition of bound and continuum components, while the basis of square integrable
functions generally used is appropriate only for the former. Since the coupling between the
bound and continuum channels in this region, which results in autoionisation, may be strong,
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it should be treated properly. To bring continuum channel asymptotics into the reach of the
exponentially decreasing basis, it is common to use the method of complex scaling, also known
as the complex dilatation (dilation) or the complex rotation method. This method has become
standard for treating resonances of atomic, molecular, and nuclear systems. It is beyond the
scope of this work to describe it in detail, especially because of its nontrivial mathematical
background. The reader is therefore encouraged to start with the review articles by Ho [83],
Junker [84], Reinhardt [85], and Moiseyev [86], which also include a extensive list of references.
Furthermore, for its application in the frame of atomic physics, the articles by Buchleitner et
al. [87] and Rost et al. [4] are of relevance, together with the study of the expectation values of
resonance states by Bürgers and Rost [88].

Using the method of complex scaling, it is possible to treat the effect of the atomic con-
tinuum exactly, together with the discrete-continuum and continuum-continuum interactions.
This treatment also includes the exact representation of atomic resonances. The method is
based on the analytic continuation of Green’s operator into the complex plane [87]. For a time
independent Hamilton operator H (e.g., H = H0 or H0 + ∆H), Green’s operator is defined as

G(E) = (E − H)−1 , (4.24)

where E ∈ C. Each bound state of the Hamiltonian H corresponds to a pole of G(E), while the
continuous part of the spectrum corresponds to a cut along the real axis. Physically relevant
is the value of Green’s operator on the real axis. It depends on whether the axis is approached
from the lower or the upper side, and therefore two continuations of G(E) into the complex
plane are defined,

G±(E) = (E ± iǫ − H)−1 , (4.25)

where the limit ǫ → 0+ is taken. Resonances (Gamow or Siegert states) satisfy the purely
outgoing wave boundary condition [88]. They are characterised by the complex poles of the
analytic continuation G+(E) of Green’s operator to the lower half of the complex energy plane.
With complex scaling, the complex energies of the resonances can be directly calculated by
seeking the eigenvalues of the complex scaled Hamiltonian, which we denote by H(Θ). The
operator H(Θ) is obtained by making the positions and momenta of H complex by making
substitutions

rk → rk eiΘ and pk → pk e−iΘ , k = 1, 2 , (4.26)

for a real parameter Θ (often called “rotation angle”). Formally, the same effect is obtained by
the transformation

H(Θ) = R(Θ)HR(−Θ) , (4.27)

where R(Θ) is the complex dilatation operator

R(Θ) = exp

(

−Θ
∑

k

pk · rk + rk · pk

2

)

. (4.28)

The scaled Hamiltonian H(Θ) is obviously no longer a Hermitian operator. The spectrum of
H(Θ),

H(Θ)|ΨΘ〉 = EΘ|ΨΘ〉 , (4.29)

is generally complex and has the following properties [83–87] compared to the spectrum of H
(Fig. 4.1):

1. The continua are rotated by the angle −2Θ away from the real axis around the branching
points (thresholds).
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Figure 4.1: Left: the spectrum of the unrotated Hamiltonian. Black circles denote bound states.
Continuum cuts starting from the ionisation thresholds lie on the real axis and the resonances
remain hidden (empty circles). Right: the spectrum of the complex scaled Hamiltonian H(Θ).
Continua are rotated around the ionisation thresholds, and the resonances are uncovered (gray
circles) if the angle Θ is large enough.

2. The bound spectrum is invariant under the complex rotation (i.e., the eigenvalues pertain-
ing to bound states are real and Θ-independent). The wavefunctions of complex scaled
bound states remain square integrable.

3. If the rotation angle Θ is large enough, the resonances are uncovered (Fig. 4.1, left). The
eigenvalues of resonance states are independent of Θ. The real part of the eigenvalue
describes the energy position of the resonance, and the imaginary part is equal to the
negative autoionisation half-width of the resonance (EΘ = E − iΓ/2). The complex scaled
resonance state wavefunctions are square integrable.

For a suitably chosen Θ, diagonalisation of the rotated Hamiltonian therefore gives not only the
resonance positions, but also the resonance widths. For Θ > 0, the discrete part of the spectrum
of H(Θ) is associated with the wavefunctions which behave asymptotically as outgoing waves
if the imaginary part of the eigenvalue is nonzero [87, 88]. Furthermore, a resonance state
is associated with a single square integrable function of H(Θ). On the contrary, for Θ < 0,
the discrete complex eigenvalues are attributed to the wavefunctions with the incoming wave
asymptotics.

Green’s operator G(E) can be related to the complex scaled Green’s operator as

G(E) = R(−Θ)GΘ(E)R(Θ) = R(−Θ)
1

E − H(Θ)
R(Θ) . (4.30)

With this approach, the divergent behaviour of unrotated Green’s operator on the real axis has
been circumvented. Eq. (4.30) represents the analytic continuation of Green’s operator. For
Θ > 0, complex scaled Green’s operator is the analytic continuation of G+(E), while for Θ < 0,
it is the analytic continuation of G−(E).

If the complex scaled Hamiltonian is represented in a truncated basis of square integrable
functions (L2), the continuum cuts are represented by a discrete set of points approximately
lying on a line rotated off the axis by the angle −2Θ (Fig. 4.2).

As has already been done before, eigenstates and eigenenergies of the total complex scaled
Hamilton operator H(Θ) = H0(Θ) + ∆H(Θ) are obtained by first seeking solutions of the field
free eigenproblem

H0(Θ)|ΨiΘ〉 = EiΘ|ΨiΘ〉 , (4.31)

where |ΨiΘ〉 is expanded in the basis of Sturmian basis functions [cf. Eq. (4.13)]:

|ΨiΘ〉 =
∑

β

xi,β|ψβ〉 . (4.32)
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Figure 4.2: Complex energy spectrum of 1P o states of the helium atom for the rotated Hamilto-
nian H(Θ) represented in Sturmian square integrable (L2) basis. The continua are discretised
and lie approximately on lines rotated around ionisation thresholds N = 1, . . . , 4. The matrix
size used in diagonalisation is 7665 × 7665 and the rotation angle set to Θ = 0.2.

This results in a matrix equation

H0(Θ) xi = EiΘ Bxi , (4.33)

where H0(Θ) is complex symmetric (not Hermitian), while B remains real symmetric positive
definite. It should be noted that explicit dependence of the coefficients xi,β on the parameter Θ
has been dropped for brevity.

Although any Hermitian or real symmetric matrix can be diagonalised and the resulting
eigenvectors can be made orthonormal, there is no guarantee that an arbitrary complex sym-
metric matrix A can be diagonalised. If it can be, however, its eigenvector matrix X can be
chosen such that [89]

XT AX = D and XT X = I , (4.34)

where D is diagonal. For a generalised eigenproblem with a matrix pencil (H(Θ),B), this
property is changed accordingly to the generalised column product containing overlap matrix
B:

xT

i Bxj = δij . (4.35)

Note that because of the properties of complex symmetric matrices, the transposition is used in
place of Hermitian conjugation [cf. Eq. (4.18)]. If furthermore the notation

|ΨiΘ〉 =
∑

β

x∗
i,β|ψβ〉 and 〈ΨiΘ| =

∑

β

xi,β〈ψβ| (4.36)

is introduced, the following relations hold for the eigenvectors |ΨiΘ〉:
〈ΨiΘ|ΨjΘ〉 = 〈ΨjΘ|ΨiΘ〉 = δij , (4.37)
∑

i

|ΨiΘ〉〈ΨiΘ| =
∑

i

|ΨiΘ〉〈ΨiΘ| = 1 . (4.38)
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Since for a real basis set changing Θ to −Θ is equivalent to changing H(Θ) into its complex
conjugate, the states |ΨiΘ〉 and the conjugated energies E∗

iΘ are eigenvectors and eigenvalues of
H(−Θ) [87],

H(−Θ)|ΨiΘ〉 = E∗
iΘ|ΨiΘ〉 , (4.39)

i.e., |Ψi,−Θ〉 = |ΨiΘ〉 and Ei,−Θ = E∗
iΘ.

Eq. (4.38) is the completeness relation for the complex scaled eigenstates. It holds in general
for the eigenstates of the complex scaled Hamiltonian for a generalised inner product of complex
scaling [88]

〈AΘ|BΘ〉 , (4.40)

where the product is formed in the usual way, except that the radial part of AΘ is deconjugated
prior to integration, i.e., the square rather than the square modulus of the radial part is calcu-
lated. This is in accord with the nature of the complex dilatation which, indeed, affects only
the radial parts of the wavefunctions and leaves the angular parts intact.

To find eigenvalues EpΘ and eigenvectors |ΦpΘ〉 of the total complex scaled Hamiltonian
H(Θ),

H(Θ)|ΦpΘ〉 = EpΘ|ΦpΘ〉 , (4.41)

an expansion analogous to Eq. (4.20) is used:

|ΦpΘ〉 =
∑

j

yj,p|ΨjΘ〉 . (4.42)

As a consequence of the above orthogonality relations, the perturbed eigenproblem from Eq.
(4.22) is changed as follows: the real matrices A and B are replaced by the complex matrices
A(Θ) and B(Θ), and the energy Ep with the corresponding eigenvalue of H(Θ),

[A(Θ) + B(Θ)] yp = EpΘ yp , (4.43)

where

Aij(Θ) = EiΘ δij and Bij(Θ) = 〈ΨiΘ|∆H(Θ)|ΨjΘ〉 . (4.44)

It should be noted that the introduction of R(Θ) is of a rather formal value in many cases:
the complex scaling for the helium atom in the homogeneous electric field results in the total
Hamiltonian which can be immediately written as

H(Θ) = T e−2iΘ + U e−iΘ + V e−iΘ + ∆H eiΘ , (4.45)

where H = H0 + ∆H ≡ T + U + V + ∆H is the unscaled Hamiltonian operator and T , U , V ,
and ∆H are the kinetic, nuclear potential, electron-electron, and external field contributions,
respectively. Thus, the complex scaled Hamilton operator is easily obtained from the constituent
terms by multiplication by suitable phase factors.

4.4 Interaction of an atom with a radiation field

So far we have considered an atom in a static external field. Since we are interested in the
fluorescence decay, we introduce the framework by which we describe an interaction of an atom
with a radiation field. The usual approach of a quantised electromagnetic field is used and the
reader is referred to Refs. [90–92] for further details.
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The behaviour of an atom interacting with the radiation field can be formally described by
the Hamilton operator

Htot = H0 + Hrad + Hint . (4.46)

H0 denotes the atomic Hamiltonian,1 Hrad the free radiation field,

Hrad =
∑

k,β

ωka†
k,βak,β ≡

∑

k,β

ωknk,β , (4.47)

and Hint the interaction between the atom and the radiation field (p = p1 + p2),

Hint = A · p +
A2

2
. (4.48)

The Coulomb gauge (∇ · A = 0) is assumed in Eq. (4.48). The operators ak,β and a†
k,β are the

occupation number (Fock) space annihilation and creation operators for photons with propa-
gation wave vector k, frequency ωk = c|k| = α−1|k|, and polarisation êβ . A(r) is the vector
potential of the radiation field,

A(r) =
∑

k,β

√

4π

2V ωk

[

ak,β êβeik·r + a†
k,β ê∗

βe−ik·r
]

. (4.49)

The sum in Eq. (4.49) runs over two linearly independent polarisations (denoted by the index
β) and over all possible values of k in the normalisation volume V . In the limit V → ∞, the
sum over k is to be replaced by the integral

∑

k

→ V

(2π)3

∫

d3k . (4.50)

In the frame where the free radiation field is included in the total Hamilton operator, the
interaction between the atom and the radiation field is time independent [93]. The eigenstates
of Htot can be written as a superposition of states in the form

|Ψ〉tot = |Ψ〉 ⊗ |nk1,β1
, nk2,β2

, . . .〉 , (4.51)

where the total state vector |Ψ〉tot has been written as a direct product of the atomic part
|Ψ〉 and the radiation field part |nk1,β1

, nk2,β2
, . . .〉. The number of photons of particular mode

(k, êβ) has been denoted by nk,β .

Exact solutions of Htot will not be sought. The incident photon flux is assumed to be low
enough to allow the photon interaction to be treated perturbatively. Only the lowest orders of
the power series expansion in A will be kept. For the calculation of the photoionisation cross
section, where a single photon is absorbed, or for spontaneous emission of a photon by an excited
atom, only the first order term A ·p is kept (Fig. 4.3a and 4.3b). The wavelength of the emitted
and absorbed photons in our region of interest (a few tens of eV) are assumed much greater
then the dimension of the atom,

λ =
2π

|k| ≫ Ratom. (4.52)

1The interaction between the atom and the external static electric field is included in Eq. (4.46) by replacing
H0 with H = H0 + ∆H.
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(a) (b) (c) (d) (e)

Figure 4.3: First order processes: diagrams describing (a) photon absorption and (b) photon
emission by an atom. Second order processes: (c) elastic scattering, (d,e) inelastic scattering.
Time is assumed to run from bottom to top.

The transition operator describing absorption and emission of a photon may therefore be written
in the dipole-length approximation [90–92]

T = i
∑

k,β

√

4π ωk

2V

[

ak,β D(êβ) − a†
k,β D†(êβ)

]

, (4.53)

where D(êβ) = êβ · (r1 + r2).

Photon scattering is treated in a similar manner: the second order terms A2 and (A · p)2

represented by diagrams in Figs. 4.3c, 4.3d, and 4.3e describe elastic and inelastic scattering of
a photon. Higher order processes (e.g., absorption of a photon followed by an emission cascade)
can be treated in the same way: products of those permutations of the terms A · p and A2

should be considered that give non vanishing matrix elements for the chosen number of photons
in the initial, intermediate, and the final states.

4.5 Photoionisation cross section

In the first part of this section, we derive the photoionisation cross section of an atom in the
ground state using the formalisms of complex scaling. We follow the path first introduced by
Rescigno and McKoy [94], and the formal procedure and interpretation of Buchleitner et al.
[87] and Rost et al. [4]. To illuminate the physical interpretation of the method, we summarise
the well known results of Fano [95, 96] describing the photoionisation profile of an autoionising
state based on the so called configuration interaction between bound and unbound states. Those
results are used to extract the parameters of the photoionisation cross section in the region of a
resonance state written in the frame of the complex dilatation method. We further extend the
results by taking into account radiation damping [97]. The second part of the section generalises
the results to the case of an atom in a homogeneous electric field.

4.5.1 Fano profile

Consider an atomic system described by a bound state |ϕ〉 and a non resonant continuum state
|ψE〉 with the energy E. The states |ϕ〉 and |ψE〉 are zero approximation states normalised to
〈ϕ|ϕ〉 = 1 and 〈ψE′ |ψE〉 = δ(E−E′) for which the configuration interaction between bound and
continuum states has not been taken into account. Let the matrix elements of the total atomic
Hamilton operator H0 describing |ϕ〉 and |ψE〉 be equal to

〈ϕ|H0|ϕ〉 = Eϕ ,

〈ψE′ |H0|ψE〉 = E δ(E − E′) ,

〈ψE |H0|ϕ〉 ≡ 〈ψE |V |ϕ〉 = VE .

(4.54)
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Formally, |ϕ〉 and |ψE〉 are the eigenstates of PH0P and QH0Q if P and Q denote the pro-
jection operators to bound and (non resonant) continuum states, while the non diagonal, i.e.,
configuration interaction, term is described by

V = PH0Q + QH0P . (4.55)

An energy normalised solution |φE〉 of the total Hamiltonian is sought,

H0|φE〉 = E|φE〉 , (4.56)

〈φE′ |φE〉 = δ(E − E′) , (4.57)

where |φE〉 is written as a superposition of the bound and continuum states,

|φE〉 = |ϕ〉〈ϕ|φE〉 +

∫

dE′|ψE′〉〈ψE′ |φE〉

= a(E)|ϕ〉 +

∫

dE′bE′(E)|ψE′〉 .

(4.58)

By inserting Eq. (4.58) into Eqs. (4.56) and (4.57), the energy dependent coefficients in Eq.
(4.58) are shown to be [95, 98]

a(E) =
V ∗

E

E − Eϕ − F (E) + iΓ(E)/2
(4.59)

and

bE′(E) =

[

P
1

E − E′
+ z(E)δ(E − E′)

]

VE′ a(E) , (4.60)

where

z(E) =
E − Eϕ − F (E)

|VE |2
. (4.61)

The quantities introduced in Eqs. (4.59)-(4.61) are the autoionisation width

Γ(E) = 2π|VE |2 (4.62)

and the energy shift present due to the finite bound-continuum coupling

F (E) = P

∫

dE′ |VE′ |2
E − E′

. (4.63)

P denotes the Cauchy principal value of the integral. The photoionisation cross section is
proportional to |〈φE |T |i〉|2 and exhibits an asymmetrical shape with respect to the resonance
energy (the Beutler-Fano profile),

|〈φE |T |i〉|2 = |〈ψE |T |i〉|2
∣

∣

∣

∣

ǫ + q

ǫ + i

∣

∣

∣

∣

2

= |〈ψE |T |i〉|2 (ǫ + q)2

ǫ2 + 1
, (4.64)

where T is the transition operator and |i〉 the initial atomic state. In. Eq. (4.64), ǫ indicates
the energy with respect to the central position of the resonance in units of Γ/2, and q the so
called asymmetry parameter of the resonance,

ǫ =
2(E − Eϕ − F )

Γ
, q =

〈Φ|T |i〉
πV ∗

E〈ψE |T |i〉 . (4.65)



50

(a) (b)

Figure 4.4: (a) Fano profile [Eq. (4.64)] for different values of parameter q. The profiles for
negative values of q are obtained by replacing ǫ with −ǫ. (b) Fano profile with damping [Eq.
4.68] for q = 2 and various ratios γ/Γ.

In Eq. (4.65), |Φ〉 denotes the state |ϕ〉 modified by an admixture of the continuum state |ψE〉:

|Φ〉 = |ϕ〉 + P

∫

dE′VE′ |ψE′〉
E − E′

. (4.66)

The parameter q describes the shape of the resonance profile: q tends to zero if the coupling be-
tween the bound and the continuum parts of the wavefunction is very strong (i.e., the resonance
state autoionises strongly), whereas large |q| values indicate the vanishing continuum coupling.
Fig. 4.5.1a shows examples of Fano asymmetrical photoionisation profiles for different values of
parameter q. Note that the minimum value of the cross section is zero for any q.

If the resonance line width Γ, the shift F , and the parameter q may be regarded as constant
in the region where the contribution of the resonance to the cross section is non negligible, the
integrated photoionisation cross section of a resonance may be written as

∫

dE

[

|〈φE |T |i〉|2 − |〈ψE |T |i〉|2
]

= |〈Φ|T |i〉|2 − πΓ

2
|〈ψE |T |i〉|2

=
πΓ

2
|〈ψE |T |i〉|2(q2 − 1)

≡ |〈ϕ|T |i〉|2 .

(4.67)

The last line in Eq. (4.67) follows from the fact that the transformation connecting the states
|ϕ〉, |ψE〉, and |φE〉 that diagonalises the total Hamiltonian is unitary [95]. As a matter of fact,
any discrepancy between the second and the third line of Eq. (4.67) may be attributed to the
energy dependence of Γ, F , or q.

It is often said that the asymmetrical line shape results from the interference between the
two possible pathways resulting in the ejected electron: the direct photoionisation of the ground
state (Fig. 4.5a) and the transition to the resonance state which decays to the continuum by an
electron emission (Fig. 4.5b). This interpretation can be misleading and is suitable only if the
bound-continuum coupling is described perturbatively. The final state can then be approximated
by the unperturbed continuum state |ψE〉. In the case of Fano diagonalisation, however, one can
no longer talk about interference. As can be seen from Eq. (4.54), the states |ψE〉 and |ϕ〉 are
not eigenstates of the atomic Hamiltonian H0, and therefore they do not represent the possible
final atomic states. There is only a single atomic final state composed of localised and non
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(a) (b)

Figure 4.5: Perturbative treatment of photoionisation: (a) direct transition to the continuum
state |ψE〉, and (b) indirect transition to |ψE〉 through the resonance state |ϕ〉.

localised components. The superposition principle – corresponding to the interference between
the direct and the indirect photoionisation of the perturbative treatment – in this case applies
for the bound and continuum component of this single final state.

4.5.2 Fano profile with radiation damping

Beside atomic ionisation, other decay mechanisms may also be important. Of particular impor-
tance in our case is the radiative decay. By emitting a photon, an atom in an autoionising state
decays to a bound atomic state. It is clear that the inclusion of radiative decay possibility lower
the ionisation branching ratio. The amplitudes of the resonance peaks in the ion yield spectra
are lowered and their energy widths are increased. The effect of the radiative decay channel in
the model description may be achieved by means of a radiation damping potential described
by Robicheaux et al. [97]. This potential is nonlocal and non Hermitian, and describes single
photon radiative transitions to lower lying atomic states in a non perturbative manner. Only
the results are given here, and the reader is referred to Ref. [97] for details. If the radiative
energy width of the bound part of the total wavefunction is denoted by γ, the photoionisation
cross section of the resonance state embedded in the continuum is described by

|〈ψE |T |i〉|2 (η + qR)2 + µ2
R

η2 + 1
. (4.68)

In Eq. (4.68), the notation

η =
2(E − Eϕ − F (E))

Γ + γ
, µR =

γ

Γ + γ
and qR = q

Γ

Γ + γ
(4.69)

has been used. In the treatment given by Robicheaux, the radiation induced energy shift is
neglected, and it is assumed that only the decay of the bound part of the wavefunction is non
negligible. Note that due to radiation damping, the peak amplitude is lowered and that the
cross section no longer falls to zero (Fig. 4.5.1b). Eq. (4.68) reduces to the ordinary Fano profile
if γ = 0.

It should be mentioned that if the width γ is known, this result is obtained by replacing
Er with Er − iγ/2 in the coefficients a(E) and bE′(E), i.e., by replacing the matrix element
〈ψE |T |i〉[(ǫ + q)/(ǫ + i)] from Eq. (4.64) with

〈ψE |T |i〉
[

ǫ + iγ/Γ + q

ǫ + iγ/Γ + i

]

(4.70)

and taking into account that η = ǫ/(1 + γ/Γ). The same result is obtained by the non per-
turbative treatment of a three level atom given by Agarwal et al. [99, 100] if: (i) the radiative
decay of the upper autoionising state to the initial state is neglected, and (ii) the coupling of
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the continuum part of the autoionising state to the lower lying bound state – which is needed
to describe the radiative decay of the autoionising state – is disregarded (in Refs. [99] and [100]
this is referred to as virtual recombination).

It is instructive to check the result of Eq. (4.68) in the limit |〈ψE |T |i〉| → 0: the cross section
in this case is proportional to a Lorentzian with the energy width Γ + γ, as expected:

|〈Φ|T |i〉|2 Γ

(E − Eϕ − F )2 + (Γ + γ)2/4
. (4.71)

The effect of replacing the resonance energy Eϕ with the complex energy Eϕ − iγ is not
merely the broadening of the spectral features (which could be achieved by a convolution with
a Lorentzian with the total width γ): the radiative decay reduces the line strength in the
photoionisation spectrum rather than just redistributing it.

4.5.3 Field free photoionisation

Let |ϕg〉 denote the bound atomic ground state with energy Eg, and ω0 and ê0 the energy and
the polarisation vector of linearly polarised incident photons, respectively. According to Fermi’s
golden rule, the photoionisation cross section is equal to [87]

σ(ω0) = 4π2αω0

∑

j

|〈φjE |D(ê0)|ϕg〉|2 , (4.72)

where |φjE〉 is an energy normalised continuum eigenstate with energy E = Eg + ω0 accessible
from the ground state, and j denotes a set of additional quantum numbers of the state. Pho-
toionisation is described by a diagram of the type shown in Fig. 4.3a, where the final atomic
state is a continuum state. It should be noted that the photoionisation cross section (4.72)
differs from the photoabsorption cross section by the contributions of true bound states |ϕi〉

4π2αω0

∑

i

|〈ϕi|D(ê0)|ϕg〉|2 δ(Eg + ω0 − Ei) . (4.73)

To the latter, the measured photoabsorption cross section, which is typically obtained from the
ratio of the incoming and the transmitted photon flux, also includes contributions from higher-
order processes, i.e., processes that involve more than one photon propagation line. These
higher order processes all diminish the transmission and thus additionally contribute to the
total measured absorption cross section. It has indeed been shown [11] that the radiative decay
of the resonance state, which corresponds to the inelastic photon scattering (diagrams d and
e in Fig. 4.3), results in pronounced differences between the measured photoionisation and
photoabsorption signal.

Eq. (4.72) can be written as

σ(ω0) = 4π2αω0

∑

j

〈ϕg|D(ê0)|φjE〉〈φjE |D(ê0)|ϕg〉 , (4.74)

where we have used the fact that D(ê0) is a Hermitian operator. The projection operator
∑

j |φjE〉〈φjE | is expressed by complex scaled Green’s operators as [87]

∑

j

|φjE〉〈φjE | =
1

2πi

[

R(−Θ)
1

H(Θ) − E
R(Θ) − R(Θ)

1

H(−Θ) − E
R(−Θ)

]

. (4.75)
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Eq. (4.75) is rather formal. As will be explained, it is obtained from

δ(E − H) =
1

2πi

[

G−(E) − G+(E)

]

= lim
ǫ→0+

1

2πi

[

R(−Θ)
1

H(Θ) − E − iǫ
R(Θ) − R(Θ)

1

H(−Θ) − E + iǫ
R(−Θ)

]

,

(4.76)

which follows from the well known equality (P is the Cauchy principal value of the integral)

lim
ǫ→0+

1

x ± iǫ
= P

1

x
∓ iπδ(x) . (4.77)

If |ϕi〉 and |φjE〉 form a complete set of states, Eq. (4.76) is equal to

δ(E − H) =
∑

i

|ϕi〉 δ(E − Ei) 〈ϕi| +
∑

j

|φjE〉〈φjE | . (4.78)

We insert the completeness relation [Eq. (4.38)] in Eq. (4.76), i.e, we use the spectral represen-
tation of Green’s operators to arrive at

∑

i

|ϕi〉 δ(E − Ei) 〈ϕi| +
∑

j

|φjE〉〈φjE | =

lim
ǫ→0+

1

2πi

∑

n

[

R(−Θ)|ΨnΘ〉〈ΨnΘ|R(Θ)

EnΘ − E − iǫ
+

R(Θ)|ΨnΘ〉〈ΨnΘ|R(−Θ)

E∗
nΘ − E + iǫ

]

.

(4.79)

The contributions of the bound states |ϕi〉 in Eq. (4.79) can be identified as those contributions
of the complex scaled states |ΨnΘ〉 which represent bound atomic states. Both contributions
cancel out if the basis in which the complex scaled eigenstates are represented is complete. This
follows from the reality of the energies EnΘ pertaining to the bound states and the fact that the
bound states can be represented in a square integrable basis even for Θ = 0. The parameter
ǫ may be set to zero in the resulting expression because of the finite imaginary part of the
remaining resonance and continuum states. Nevertheless, if the completeness relation is used
in Eq. (4.75), the expression diverges whenever E is equal to the energy of a bound state. For
energies above the ionisation threshold, however, the contributions of G−(E) and G+(E) exactly
cancel for bound states, and the complete set of states may therefore be inserted in Eq. (4.75).
Needless to say, in practice, the contributions of bound states are not calculated.

With the ideas of the last paragraph in mind, Eq. (4.72) can be transformed into

σ(ω0) =
4π2αω0

2πi

∑

n

[〈ϕg|D(ê0)R(−Θ)|ΨnΘ〉〈ΨnΘ|R(Θ)D(ê0)|ϕg〉
EnΘ − Eg − ω0

− 〈ϕg|D(ê0)R(Θ)|ΨnΘ〉〈ΨnΘ|R(−Θ)D(ê0)|ϕg〉
E∗

nΘ − Eg − ω0

]

. (4.80)

The second term in Eq. (4.80) is just the complex conjugate of the first term. It thus follows
that

σ(ω0) = 4παω0 Im
∑

n

〈ϕg|D(ê0)R(−Θ)|ΨnΘ〉〈ΨnΘ|R(Θ)D(ê0)|ϕg〉
EnΘ − Eg − ω0

. (4.81)

The product of matrix elements in Eq. (4.81) can be further simplified as follows. Since the state
|ϕg〉 is represented by a real wavefunction in Sturmian basis, the first and the second matrix
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element are equal:

〈ϕg|D(ê0)R(−Θ)|ΨnΘ〉 = 〈ΨnΘ|R(−Θ)D(ê0)|ϕg〉∗

= 〈ΨnΘ|R(Θ)D(ê0)|ϕg〉 .
(4.82)

Instead of calculating |ϕg〉 separately, the complex scaled ground state

|ΨgΘ〉 = R(Θ)|ϕg〉 (4.83)

is obtained in the diagonalisation of H(Θ). Since the state |ϕg〉 can be represented in a square
integrable basis, Eq. (4.83) can be reverted to give the final result

σ(ω0) = 4παω0 Im
∑

n

〈ΨnΘ|R(Θ)D(ê0)R(−Θ)|ΨgΘ〉2
EnΘ − Eg − ω0

. (4.84)

Note that it is now trivial to calculate the matrix element in Eq. (4.84): the complex scaled
operator D(ê0) is simply

R(Θ)D(ê0)R(−Θ) = D(ê0) eiΘ ≡ DΘ(ê0) . (4.85)

It is now clear that for the calculation of the photoionisation cross section, only the eigenstates
and eigenvalues of H(Θ) are required (i.e., R(Θ) and |ϕg〉 are not needed). It should be noted
that the calculation of an unscaled state from the corresponding complex scaled state (i.e., “back
rotation”) would not be possible for continuum or resonance states as they cannot be represented
in the framework of an L2 basis set.

As can be seen from Eq. (4.84), for a given ω0, only states with energies close to Eg + ω0

contribute substantially to the total cross section (Fig. 4.6). Obviously, to describe a contin-
uum state, continuum and resonance eigenstates |ΨnΘ〉 are included in the summation. This

Figure 4.6: The role of the projection operator
∑

j |φjE〉〈φjE |: eigenstates of H0(Θ) with ReEnΘ

close to E = Eg + ω0 contribute most notably to the cross section.

means that a continuum atomic state always consists of localised and non localised components.
However, the influence of localised components of the wavefunction is negligible for energies far
away from the regions of resonances. Furthermore, if an eigenstate |ΨnΘ〉 is characterised by a
large imaginary part of the corresponding eigenenergy (as is the case for the continuum points
which do not lie in the vicinity of the pertinent ionisation threshold), its contribution to the
cross section represents a smooth background. It should be made clear that for an accurate
calculation of the contributions from continuum cuts, the discrete grid of points describing the
cuts should be very dense. This, in turn, requires a large basis size. In the case of a Sturmian
basis, this means that high order polynomials should be used to describe oscillatory behaviour
of the wavefunction.
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If the state |ΨnΘ〉 in the sum Eq. (4.84) represents a resonance, its contribution is given by

σn(ω0) = 4παω0 Im
〈ΨnΘ|DΘ(ê0)|ΨgΘ〉2

En − Eg − ω0 − iΓn/2
, (4.86)

where the complex resonance energy has been written as EnΘ = En − iΓn/2. Eq. (4.86) can be
cast into a form that exactly corresponds to Fano’s parameterisation of the partial photoionisa-
tion cross section. In this way, it is possible to gain insight into the physical meaning of the com-
plex matrix elements. Let Bn and Cn denote the real and imaginary parts of 〈ΨnΘ|DΘ(ê0)|ΨgΘ〉,
respectively,

Bn + iCn = 〈ΨnΘ|DΘ(ê0)|ΨgΘ〉 (4.87)

and

ǫn =
Eg + ω0 − En

Γn/2
, (4.88)

qn = −Bn

Cn
, (4.89)

µ2
n =

8παω0 C2
n

Γn
. (4.90)

The contribution of the resonance |ΨnΘ〉 is then equal to

σn = µ2
n

[

(ǫn + qn)2

ǫ2n + 1
− 1

]

, (4.91)

whereas the total photoionisation cross section can be written as a sum of a non resonant and
resonant terms:

σ(ω0) = σ0(ω0) +
∑

n

σn(ω0) . (4.92)

In Eq. (4.92), σ0(ω0) is a smooth background that originates from the (discretised) continuum
cuts. Since a single complex scaled state describes a resonance, it follows that ǫn corresponds to
the dimensionless energy ǫ, and the asymmetry parameter qn to the q parameter, as defined in
Eq. (4.65). Furthermore, it can be seen from Eq. (4.90) that the square of the imaginary part
C2

n is proportional to the square modulus of the dipole matrix element |〈ψE |T |i〉|2 between the
initial bound state and the structureless continuum. It can therefore be deduced that the square
of the real part of the matrix element B2

n represents the dipole coupling between the initial and
the quasi bound part (the modified bound part) of the total wavefunction, i.e., it is proportional
to |〈Φ|T |i〉|2 (cf. also Ref. [4]). This latter property can also be seen from the integrated cross
section, i.e., from the area under the resonance:

∫ ∞

−∞
dE σn(E) =

Γn

2

∫ ∞

−∞
dǫn σn(ǫn)

= 4π2αω0

[

B2
n − C2

n

]

= 4π2αω0 Re 〈ΨnΘ|DΘ(ê0)|ΨgΘ〉2 .

(4.93)

Eq. (4.93) is obviously the analog of Eq. (4.67). According to the latter, the integrated cross
section is equal to the square modulus of the dipole matrix element between the unperturbed
bound state (denoted by |ϕ〉) and the initial state. The real part of the square of the complex
scaled matrix element is therefore equal to the transition matrix element where the configuration
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interaction between the bound and continuum part is neglected. An expression similar to Eq.
(4.93) will be used in the following to approximate the radiative decay rate of a resonance state.

It should be noted that each term that belongs to a resonance in Eq. (4.84) becomes negative
for some range of values of ω0. The total sum, however, is guaranteed to be positive, since it
represents the cross section. To be physically meaningful, the contributions of all the states
must yield a positive result. The negative values of σn(ω0) are to be understood as a decrease
of the cross section below the value of the bare, non resonant continuum. This, following Fano,
is the result of the destructive interference between localised and continuum components of the
wavefunction.

At the end it should be mentioned that the photoionisation cross section for the case of
linearly polarised incident light does not depend on ê0 since the quantisation axis of the atom
may be chosen arbitrarily in the absence of an external field. Therefore, if ê0 = ẑ is set and the
Wigner-Eckart theorem [13, 53] is applied, Eq. (4.84) simplifies to

σ(ω0) = 4παω0 Im
∑

n

(

Ln 1 Lg

−Mn 0 Mg

)2 〈ΨnΘ‖DΘ‖ΨgΘ〉2
EnΘ − Eg − ω0

. (4.94)

The meaning of the reduced matrix element 〈ΨnΘ‖DΘ‖ΨgΘ〉 is explained in Appendix B. In
the absence of external fields, the quantisation axis of an atom can be arbitrarily chosen, too.
This means that the total cross section may be obtained by an average over the possible values
of Mg. For the ground state of the helium atom, Lg = 0, and therefore Mg = 0. Due to the
chosen polarisation and the properties of the 3-j symbols, only final states with Mn = 0 give
non vanishing contributions. As a consequence, the only accessible final states are those with
Ln = 1 and odd parity πn. The final result is thus

σ(ω0) =
4παω0

3
Im

∑′

n

〈ΨnΘ‖DΘ‖ΨgΘ〉2
EnΘ − Eg − ω0

, (4.95)

where the prime is used to denote summation over the whole set of final state quantum numbers,
with the exception of magnetic quantum numbers Mn.

4.5.4 Spontaneous emission

The ability of an autoionising state to emit an electron due to the finite coupling between
localised and continuum components is completely described by Eq. (4.84). However, the treat-
ment of the preceding subsection does not take into account other decay mechanisms that are
also present. Specifically, it does not take into account the decay due to interaction of the
atom with the radiation field. The radiative decay channel represents the only possible decay
path for a bound atomic state, but may also become dominant for resonance states when the
autoionisation width is very small.

The aim of this section is to calculate the widths resulting from the radiative decay of a
state. In the following, the photon density of the incident light is assumed small so that the
spontaneous photon emission dominates over the stimulated emission. We first proceed with the
spontaneous emission rate from a bound state, and later generalise the results to the case of a
resonance state.

Let |ϕn〉 be a state vector describing a bound excited atomic state of the helium atom below
the N = 2 ionisation threshold. The atom initially in this state can emit a photon with the
propagation vector k, energy ω = |k|/α, and polarisation êβ . This is described by the probability
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rate γn per unit photon energy per unit solid angle of the emitted photon as [90]

∂2γn

∂ω∂k̂
=

α3ω3

2π

∑

β





∑

i

|〈ϕi|D(êβ)|ϕn〉|2δ(En − Ei − ω) +
∑

j

|〈φjE |D(êβ)|ϕn〉|2


 . (4.96)

We have used |ϕi〉 to denote bound final eigenstates with energies Ei and |φjE〉 for continuum
eigenstates with the energy E = En − ω. The first term in Eq. (4.96) describes the usual
fluorescence decay to bound atomic states [90], while the second term describes a radiative
transition to a continuum or an autoionising state, i.e., a process eventually resulting in a
photon, an ion, and a free electron. Note that the initial state |ϕn〉 need not lie below the N = 1
threshold: the states above the first ionisation threshold with parity equal to πn = (−1)L+1 are
also true bound states. An example of such a process is a decay of a 1P e doubly excited state.
It is also clear that in this case continuum eigenstates are indeed accessible: the 1P e state can
decay to 1P o states which lie above the N = 1 threshold.

The contribution of the continuum term can be treated in the same manner as the pho-
toionisation cross section [cf. Eq. (4.75)]. The resulting expression is then integrated over the
energies and angles of the emitted photon and summed over the two independent polarisations
to give the total radiative rate. In the following, this contribution will be neglected. Testing
calculations where doubly excited states are treated as bound show that the sum of ω3-weighted
squared matrix elements between an initial doubly excited state and final singly excited states
is at least an order of magnitude larger that the corresponding sum connecting doubly excited
states. This is expected since partial contributions to the total radiative transition rate (owing
to the ω3 dependence) may contribute substantially only if occupation numbers of both electrons
change. Since the dipole transition operator is a sum of single particle operators, the matrix
element in this case is small because of the small overlap of the single electron wavefunctions.
Thus, a doubly excited state most probably decays to a singly excited state where one of the
electrons does not participate actively in the transition (spectator electron). The same argument
holds for a continuum final state if fluorescence and autoionisation are both considered as first
order perturbations. It turns out that the main contribution to the total radiative decay rate
stems from the 2p → 1s transition of the inner electron [19]. This is why all fluorescence decay
rates of doubly excited states below the N = 2 threshold are approximately of same order of
magnitude (cf. Appendix E). Their rates are to be compared to the decay rate of the He+ ion
γHe+ ≈ 2.42× 10−7 a.u. (τHe+ ≈ 100 ps). The discrepancies from the ionic rate reflect the effect
of configuration interaction and the failure of the single configuration description for doubly
excited states [19]. It thus follows that we may approximate the fluorescence rate by2

γn ≈ α3

2π

∑

β

∑

i

∫

d2k̂ (En − Ei)
3〈ϕi|D(êβ)|ϕn〉2 . (4.97)

The preceding discussion applies to the case where |ϕn〉 is a bound state. If, however, the
initial state is a resonance represented by the complex scaled state vector |ΨnΘ〉, we substitute
the expression under the integral by

(En − Ei)
3 Re 〈ΨiΘ|DΘ(êβ)|ΨnΘ〉2 , (4.98)

where En = Re EnΘ and where |ΨiΘ〉 denotes a complex scaled bound state. This means that
the real part of the square of the complex matrix element may be used to calculate radiative

2Note that dipole matrix elements of bound states represented in a basis of real Sturmian basis functions is a
real quantity.
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transition rates. As has been shown [Eq. (4.93)], the real part of the squared dipole matrix
element between a resonance and a bound state represents a quantity proportional to the inte-
grated cross section, and the latter is proportional to the square modulus of the dipole matrix
element between the unmodified bound part of the resonance wavefunction and the bound state.
Eq. (4.98) therefore gives approximately the same result as would be obtained in the framework
where doubly excited resonance states were treated as true bound states. It should be men-
tioned that the continuum contribution (the contribution of |φjE〉) to the radiative transition
rate was considered for the case of photodissociation through the radiative channel of exotic
molecular ions [101, 102]: the treatment given is similar to the derivation of the photoionisation
cross section, with the initial state being a resonance. However, no justification or comment was
given about the validity of the latter approach.

The angular integration in Eq. (4.97) can easily be performed. It is described in Appendix
C in detail. The final result applicable to both, a bound and a resonance initial state is shown
to be

γn =
4α3

3(2Ln + 1)

∑′

i

(En − Ei)
3 Re 〈ΨiΘ‖DΘ‖ΨnΘ〉2 . (4.99)

In Eq. (C.12), Ln is the total angular momentum of the initial state. The prime again means
that the magnetic quantum numbers of the final state Mi are to be omitted from the sum. If Li,
πi, and πn denote the total angular momentum of the final state |ΨiΘ〉, the parity of the final
state, and the parity of the initial state, respectively, the index i in Eq. (4.99) runs over those
final states for which

|Li − Ln| ≤ 1 ≤ Li + Ln and πi = −πn . (4.100)

With the calculated radiative rates γn, the photoionisation cross section from Eq. (4.84) can
be corrected in accordance with Eq. (4.68). Since the radiative damping affects only the bound
part of the total wavefunction, the terms pertaining to discretised continuum cuts in Eq. (4.84)
remain unchanged, whereas resonance contributions σn(ω0) are replaced by

σcorr
n (ω0) = 4παω0 Im

(Bn + iCn)2 + Rn

En − Eg − ω0 − i(Γn + γn)/2
, Rn = −γn(B2

n + C2
n)

Γn + γn
. (4.101)

Note again that this is quite different from replacing Γn with the total width Γn + γn since the
amplitude of the resulting peak is additionally lowered.

4.5.5 Photoionisation in electric field

In the field free case, three types of eigenstates emerge in the diagonalisation of the scaled
Hamilton matrix H0(Θ): bound states, states representing discretised continuum cuts, and
resonance states. When the electric field is applied, however, no true bound states exist anymore.
They are all turned into resonances (cf. for example Alvarez et al. [62]). It can be thought that
the electron tunnels through the finite barrier that results from the atomic potential after the
field has been applied. Nevertheless, the states that were strongly bound in the field free case
are only weakly affected by the external field if its electric field strength is small compared to
the field strength of the nucleus. Such states may therefore be treated as bound.

In this subsection we study the (electric field) ground state photoionisation of the helium
atom in the homogeneous electric field, whereby the initial state is treated as a true bound
state. This approximation can be well justified: the helium atom ground state is energetically
well separated from all higher lying states, even when the electric field is applied, thus the field
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induced mixing with the higher states is negligible. Furthermore, both electrons on average
move very close to the nucleus, where the potential of the external field is several orders of
magnitude smaller then the effective nuclear potential.

The treatment similar to the field free case applies to the case of the external field. Here,
however, the results depend on the relative orientation of the polarisation ê0 and the electric
field vector F . Additional complications also arise since the energies are no longer independent
of magnetic quantum numbers.

We start from Eq. (4.84), where the eigenvectors and eigenvalues of H0(Θ) are replaced by
the eigenvectors and eigenvalues of the total Hamiltonian H(Θ),

σ(ω0) = 4παω0 Im
∑

n

〈ΦnΘ|DΘ(ê0)|ΦgΘ〉2
EnΘ − Eg − ω0

. (4.102)

In Eq. (4.102), |ΦgΘ〉 denotes the helium ground state in the electric field and |ΦnΘ〉 the excited
state with energy EnΘ. As before, the matrix element is calculated from the complex scaled state
|ΦgΘ〉 that is obtained by diagonalising H(Θ). As has been explained, |ΦgΘ〉 is treated as a bound
state. This implies that only the real part of the corresponding energy EgΘ is considered, i.e.,
Eg = Re EgΘ. The calculation of transition matrix elements is explained in Appendix B in detail.
It is to be noted that since the form of Eq. (4.102) is the same as in the field free case, exactly
the same parameterisation [Eqs. (4.87)-(4.90)] can be used for the resonance photoionisation
cross section.

4.5.6 Spontaneous emission in electric field

Radiative decay in an externally applied homogeneous electric field is treated in the same man-
ner as in the field free case. The same assumption is made regarding the incident photon flux.
Only the final states below the first ionisation threshold will be considered as final states. Fur-
thermore, it is assumed that the final singly excited states may be treated as true bound states.
This approximation is suitable when the external electric field strengths are several orders of
magnitude below the strengths the electrons are subject to due to the nucleus. The assumption
is well justified for field strengths F ≤ 20 kV/cm for singly excited states with principal quan-
tum numbers n ≤ 10: autoionisation widths resulting from diagonalisation of the total Hamilton
matrix which includes states with total angular momenta L ≤ 10 and both parities (cf. Chapter
5) are of order 10−10 a.u. Singly excited states with n ≤ 5 are characterised by energy widths
of order 10−12 a.u., which is approximately the accuracy of the current calculations. The latter
approximation is a crude one for high lying singly excited states and for high field strengths: for
F ≤ 50 kV/cm, energy widths for states with n ≤ 10 are of order 10−9 a.u., but rise to 10−6 a.u.
– 10−5 a.u. when the field reaches 100 kV/cm. Furthermore, for n = 15, the diagonalisation
of H(Θ) results in energy widths of order 10−7 a.u. for F ≤ 10 kV/cm, 10−6 a.u. for the field
around 50 kV/cm, and approximately 10−5 a.u. for the field strengths close to 100 kV/cm.

If the accessible final states |ΦiΘ〉 are considered bound, the total fluorescence rate γn may
be approximated by [cf. Eq. (4.97)]

∂γn

∂k̂
≈ α3

2π

∑

β

∑

i

(En − Ei)
3 Re 〈ΦiΘ|DΘ(êβ)|ΦnΘ〉2 , (4.103)

where En = Re EnΘ and Ei = Re EiΘ. The index i runs over all accessible states below the
first ionisation threshold. Since for the case of an initial doubly excited state below the N = 2
threshold the sum formally also includes high singly excited Rydberg states, for which our
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assumption does not hold anymore, this approximation seems to fail. In this case, however,
transitions to singly excited states characterised by principal quantum numbers n′ much higher
than the principal quantum number n of the outer electron contribute negligibly. We have
already mentioned (cf. pg. 57) that the radiative decay is most probable when one of the electrons
acts as a spectator: a transition to a high lying singly excited state would imply that occupation
numbers of both electrons are changed, resulting in a small transition matrix element.

As has been done for the field free case, γn is used to account for radiation damping in the
photoionisation cross section equation: in Eq. (4.101), the eigenstates, the energies, and the
widths are replaced by the corresponding quantities describing the atom in an external field.

4.6 Inelastic photon scattering cross section

In the following, the cross section for the inelastic scattering of photons is derived. The results for
the field free case are presented and later generalised to the case of electric field. The treatment
with the Kramers-Heisenberg formula is used, and the reader is referred to Refs. [90–92] for
details.

4.6.1 Field free scattering

Inelastic scattering cross section per unit emitted photon energy per unit solid angle of the emit-
ted photon describing photon scattering from an atom in the ground state may be approximated
by [103]

∂2σ

∂ω∂k̂
≈ α4ω3ω0

∑

β

∑

m

|〈ϕm|D(êβ)G0(Eg + ω0)D(ê0)|ϕg〉|2 δ(Eg + ω0 − Em − ω) . (4.104)

The kets |ϕg〉 and |ϕm〉 represent the initial ground state and bound final states with energies
Eg and Em, respectively. The energy and polarisation of the incident photons are denoted by
ω0 and ê0, while ω, k, and êβ are used for the energy, propagation vector, and polarisation of
the emitted photons, respectively. G0(E) = (E − H0)

−1 is the free atom propagator. From
the second order processes depicted in Fig. 4.3, only the resonant term (Fig. 4.3d) is considered
in Eq. (4.104). Since in our case the initial state is the ground state of the helium atom, the
energy of the emitted photon cannot be greater than the energy of the incident photon due to
energy conservation. Therefore, the inelastic scattering process represented by the diagram in
Fig. 4.3e does not contribute to the scattering cross section. Furthermore, in our treatment
of the scattered photons, the contribution of the elastic scattering term is small and will be
neglected. This is because the amplitude describing the resonant term (Fig. 4.3d) is of the order
of c/ω0 ≃ 3×10−9 m for incident photons with energies ω0 in the region of doubly excited states
below the N = 2 threshold, while the amplitude of the elastic scattering term (Fig. 4.3c) is of
the order of the classical electron radius r0 ≈ 2.8 × 10−15 m [90].

The contribution of the final doubly excited states to the total cross section will be assumed
small for the same reasons as in the case of spontaneous emission from a doubly excited state
(cf. pgs. 57 and 59 for discussion). This type of inelastic scattering involves coherent transitions
between doubly excited states and will be neglected. The sum over m in Eq. (4.104) therefore
includes only singly excited states.

Integrating Eq. (4.104) over the energy of the emitted photon and rewriting the propagator
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G0(Eg + ω0) by means of complex scaled Green’s operator, one obtains

∂σ

∂k̂
≈ α4ω0

∑

β

∑

m

(Eg + ω0 − Em)3|Mmg|2 , (4.105)

where

Mmg =
∑

n

〈ΨmΘ|DΘ(êβ)|ΨnΘ〉〈ΨnΘ|DΘ(ê0)|ΨgΘ〉
Eg + ω0 − EnΘ

. (4.106)

For the accessible final states in Eq. (4.105), Em ≤ Eg + ω holds. The completeness relation
of the complex scaled eigenstates has been used and the initial and final states expressed with
their complex scaled counterparts. Since the eigenvalues are independent of magnetic quantum
numbers, angular integration can be performed by means of the parameterisation of k̂ and êβ

described in Appendix B. The result for the ground state of the helium atom is

σ ≈ 8πα4ω0

27

∑′

m

(Eg + ω0 − Em)3

∣

∣

∣

∣

∣

∑′

n

〈ΨmΘ‖DΘ‖ΨnΘ〉〈ΨnΘ‖DΘ‖ΨgΘ〉
Eg + ω0 − EnΘ

∣

∣

∣

∣

∣

2

. (4.107)

As before, the summation sign with the prime denotes that magnetic quantum numbers are
omitted from the sum. The index n in Eq. (4.107) runs over 1P o states, whereas the index m
runs over 1Se and 1De states.

In Eqs. (4.105) and (4.107), the summation over the intermediate states includes bound
states, as well as resonances and continuum states. For an isolated narrow resonance interme-
diate state, the square modulus of the matrix element |Mmg|2 has a pronounced peak centred
at the resonance energy En = Re EnΘ, while for a bound state, the cross section is divergent if
ω0 is exactly equal to the energy difference EnΘ − Eg = En − Eg. The latter behaviour can be
corrected if radiation damping is accounted for in Eq. (4.105) by substituting

En − iΓn/2 with En − iΓn/2 − iγn/2 . (4.108)

in the matrix element Mmg (cf. pg. 51). Note that this treatment is consistent with the radiation
damping introduced earlier.

A comment should be made at the end about the shapes of the peaks in the inelastic scatter-
ing spectra originating from bound and resonance intermediate states. In general, those peaks
are not symmetrically shaped. Their asymmetry is a consequence of the interference with the
continuum and close lying resonances and bound states (total energy widths of the latter may
be finite due to radiative decay). This is in contrast with the treatment where the inelastic
scattering is regarded incoherently, as a two step process, resulting in a cross section composed
of symmetric peaks. The latter approximation is valid only when the states are isolated, so
that their overlap with the neighbouring resonance or bound states is negligible, and when the
contribution of the continuum is small and can also be neglected. If this is the case, the square
modulus of Mmg may be approximated by

|Mmg|2 ≈
∑

n

∣

∣

∣

∣

〈ΨmΘ|DΘ(êβ)|ΨnΘ〉〈ΨnΘ|DΘ(ê0)|ΨgΘ〉
Eg + ω0 − EnΘ

∣

∣

∣

∣

2

. (4.109)

4.6.2 Inelastic scattering in electric field

Results from Eqs. (4.105) and (4.106) are straightforward to generalise to the case when electric
field is applied: as before, the field free eigenenergies and eigenvectors are replaced by the
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corresponding eigenpairs of H(Θ). The result is

∂σ

∂k̂
≈ α4ω0

∑

β

∑

m

(Eg + ω0 − Em)3|Mmg|2 (4.110)

with

Mmg =
∑

n

〈ΦmΘ|DΘ(êβ)|ΦnΘ〉〈ΦnΘ|DΘ(ê0)|ΦgΘ〉
Eg + ω0 − EnΘ

. (4.111)

Only contributions of final singly excited states are considered in Eq. (4.110), and the states
|ΦgΘ〉 and |ΦmΘ〉 are again treated as if they were bound. The energies Eg and Em denote the
real parts of EgΘ and EmΘ, respectively. The matrix elements in Eq. (4.111) are calculated using
Eqs. (B.51) and (B.52). After summing over the intermediate states, |Mmg|2 has the form

|Mmg|2 =
∣

∣

∣

∑

q′
ǫβ
q′aq′

∣

∣

∣

2
. (4.112)

If Eq. (4.112) is parameterised as described in Appendix C and integrated over the directions of
the scattered photon, the result simplifies to:

∫

d2k̂ |Mmg|2 =
2π

3

(

4|a0|2 + |a1|2 + |a−1|2
)

for β = 1 ,
∫

d2k̂ |Mmg|2 = 2π
(

|a1|2 + |a−1|2
)

for β = 2 .

(4.113)

As before, if the energy of the intermediate state is written as EnΘ = En − iΓn/2, radiation
damping is taken into account by replacing En with En − iγn.
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Numerical implementation

5.1 Solutions of the field free eigenproblem

As already mentioned in Chapter 4, eigenstates of the field free Hamiltonian H0 are used for the
representation of the total Hamilton operator H. In this section we describe how the eigenstates
and eigenenergies of the free helium atom are calculated. It has been told that non orthogonal
Sturmian basis leads to a generalised eigenvalue problem1

H0 xi = EiΘ Bxi , (5.1)

where H0 ∈ C
N×N is the matrix representation of H0(Θ) and B ∈ R

N×N the overlap matrix of
the basis functions. Since the basis is real, H0 is complex symmetric, whereas B is real symmetric
positive definite. The eigenvectors xi are chosen to satisfy the normalisation relation

xT

i Bxj = δij . (5.2)

The basis consisting of several pairs of nonlinear parameters (k1, κ1), (k2, κ2), . . . is almost
inevitably over-complete for basis sizes N above a few hundred wavefunctions, yielding matri-
ces H0 and B that are numerically singular. A simple reduction of Eq. (5.1) to an ordinary
eigenvalue equation using the inverse of B (e.g., by Cholesky decomposition) is thus not pos-
sible. Furthermore, standard diagonalisation techniques based on the QZ algorithm, which is
commonly used to solve generalised eigenproblems, are numerically unstable for singular pencils
(H0,B) and produce large numerical errors [89]. A pseudo inverse of the overlap matrix is pos-
sible, however, if singular value decomposition (SVD) is used to determine linearly independent
vectors [104]. In the following, a method that transforms Eq. (5.1) into an ordinary eigenvalue
problem with a complex symmetric matrix is described.

As the overlap matrix is symmetric, using diagonalisation instead of SVD decomposition can
be computationally less demanding.2 The matrix B is therefore diagonalised,

Σ = UTBU , U = (u1, . . . ,uN ) , Σ = diag(σ1, . . . , σN ) , (5.3)

Bui = σi ui, i = 1, . . . , N , (5.4)

1Explicit dependence of the matrices and column vectors on parameter Θ will be dropped for brevity throughout
this chapter.

2Singular value decomposition B = UΣVT of a real symmetric positive definite matrix B is equivalent to
diagonalisation since for this special case U = V. The smallest eigenvalues, however, that are close to numerical
errors of the matrix elements are less accurate than in the case of SVD. For a symmetric positive definite matrix
B it may even happen that the lowest computed eigenvalues become negative and should be discarded.
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where the eigenvalues σi are taken to be ordered in descending order,

σ1 ≥ σ2 ≥ . . . ≥ σN . (5.5)

To span the same vector subspace as is spanned by the over-complete Sturmian basis, only
those vectors that are linearly independent are retained. In our case, only the eigenvectors
uj pertaining to non-zero eigenvalues σj are linearly independent. These vectors are chosen
to represent the vector subspace of interest. In practice, numerical diagonalisation of B gives
eigenvalues that are not strictly zero but are very small instead. Thus, out of N eigenpairs,
P eigenpairs are chosen that have eigenvalues above some threshold parameter ǫ, σj ≥ ǫ, j =
1, . . . , P . If we define

U′ = (u1, . . . ,uP ) ∈ R
N×P , (5.6)

every vector xi can be projected into the space spanned by the vectors u1, . . . ,uP by

P =

p
∑

j=1

uju
T

j = U′U′T . (5.7)

Thus, instead of solving Eq. (5.1), we wish to solve the modified projected generalised eigenvalue
problem,

PH0P xi = EiΘ PBP xi . (5.8)

In Eq. (5.8), the matrix B can be approximated by means of the P chosen eigenvectors uj and
eigenvalues σj ,

B = UΣUT ≈ U′Σ′U′T , (5.9)

where

Σ′ = diag(σ1, . . . , σP ) ∈ R
P×P . (5.10)

If furthermore the matrices

Σ′±1/2
= diag(σ

±1/2
1 , . . . , σ

±1/2
P ) , S′ = U′Σ′−1/2

and S′−1
= Σ′1/2

U′T (5.11)

are defined and the equalities

Σ′1/2
Σ′−1/2

= Σ′−1/2
Σ′1/2

= I and U′TU′ = I (5.12)

are used, Eq. (5.8) is transformed to

S′TH0S
′ (S′−1

xi) = EiΘ (S′−1
xi) . (5.13)

Eq. (5.13) is an ordinary eigenvalue problem for the column vector x′i = S′−1
xi, where

x′Ti x′j = δij . (5.14)

Since the matrix H0 is symmetric, the transformation S′TH0S
′ also yields a symmetric matrix.

If needed, the eigenvectors of the transformed matrix can easily be transformed back to the
original basis frame by inverting Eq. (5.13). Henceforth, the representation of states in the
linearly independent basis will be referred to as the reduced basis set expansion, and the original
Sturmian basis set expansion as the non reduced basis set expansion.
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5.2 Eigenstates and eigenvalues of the total Hamiltonian

The generalised eigenvalue problem describing the helium atom in a homogeneous electric field
can be written by means of the matrices A and B [Eqs. (4.43) and (4.44)]:

Aij = EiΘ δij and Bij = 〈ΨiΘ|∆H(Θ)|ΨjΘ〉 . (5.15)

The nontrivial matrix element Bij can be expressed as

Bij = 〈ΨiΘ|∆H(Θ)|ΨjΘ〉
=

∑

β,δ

∑

γ,ω

x′
i,βS′

γβ〈ψγ |∆H(Θ)|ψω〉S′
ωδx

′
j,δ

= x′Ti

(

S′T ∆HS′
)

x′j

= xT

i ∆Hxj ,

(5.16)

where ∆H has been used to denote the representation of ∆H(Θ) in the Sturmian basis. In
Eq. (5.16), the angular part of the integrals can be evaluated by means of the Wigner-Eckart
theorem [cf. Eq. (B.39)], giving

〈ΨiΘ|∆H(Θ)|ΨjΘ〉 = −F 〈ΨiΘ|D0(Θ)|ΨjΘ〉

= −F (−1)Li−Mi

(

Li 1 Lj

−Mi 0 Mj

)

〈ΨiΘ‖D(Θ)‖ΨjΘ〉 .
(5.17)

Since for an isolated atom the total angular and spin momenta are conserved, the free-atom
Hamiltonian H0(Θ) is formally represented by a block diagonal matrix (Fig. 5.1, left),

Figure 5.1: Matrix representations of H0 (left) and ∆H (right) for the case F ‖ ẑ.

H0 = H0(
1Se) ⊕ H0(

1P e) ⊕ H0(
1P o) ⊕ . . . ≡

⊕

(L,π)

H0(
1Lπ) . (5.18)

Therefore, the generalised eigenvalue problem resulting from the non reduced basis expansion is
formally transformed into an ordinary eigenvalue problem if the transformation matrix is written
as a direct sum

S′ =
⊕

(L,π)

S′(1Lπ) . (5.19)
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Let the submatrices of H0(
1Lπ) and S′(1Lπ) have the following dimensions, in accord with the

notation used in the previous section:

H0(
1Lπ) ∈ C

N(1Lπ)×N(1Lπ) ,

S′(1Lπ) ∈ R
N(1Lπ)×P (1Lπ) .

(5.20)

With the latter forms of H0 and S′, the Hamilton operator is written in reduced representation
as

H′
0 = S′THS′ =

⊕

(L,π)

H′
0(

1Lπ) , (5.21)

and the electric field interaction ∆H(Θ) as

∆H′ = S′T∆HS′ . (5.22)

The matrix ∆H is composed of (generally rectangular) blocks above and below diagonal (Fig.
5.1, right). Both, H′

0 and ∆H′ retain the same block structure as H0 and ∆H except that the
blocks are smaller for the reduced basis representations. The total Hamilton matrix H0 + ∆H

can therefore be represented in the reduced basis as

S′T(H0 + ∆H)S′ = H′
0 + ∆H′ . (5.23)

Instead of keeping P (1Lπ) eigenvectors of the block 1Lπ in the expansion, only Q(1Lπ) eigen-
vectors are chosen that lie in the region of interest. With this approach, the final matrix size
used in diagonalisation and the number of matrix elements that are to be calculated are dras-
tically reduced. The inclusion of only a part of the calculated eigenvectors reduces the size of
the diagonal blocks to Q(1Lπ) × Q(1Lπ), while the size of the non diagonal blocks is reduced to
Q(1Lπ) × Q(1L′π′

). Thus, the total number of eigenvectors is equal to

Q =
∑

(L,π)

Q(1Lπ) (5.24)

Eq. (4.43) remains valid, except that yk now represents the truncated column vector:

yk =







yk,1
...

yk,Q






. (5.25)

The meaning of Bij is the following: if x′i represents an eigenstate of symmetry 1Lπ1

1 and x′j an

eigenstate of the symmetry 1Lπ2

2 , the matrix element Bij is equal to

Bij = x′Ti · S′T(1Lπ1

1 ) · ∆H(1Lπ1

1 ; 1Lπ2

2 ) · S′(1Lπ2

2 ) · x′j
= xT

i · ∆H(1Lπ1

1 ; 1Lπ2

2 ) · xj .
(5.26)

In practice, the eigenproblem for each of the symmetries 1L
π

is calculated and diagonalised
separately to save space. Details about numerical implementation are the subject of the next
section.
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5.3 Construction of the basis set

Probably the most nontrivial part of the calculations is choosing the parameters of the Sturmian
basis functions that are used to represent the field free eigenstates. Since the complete set
of parameters used in the present calculations would result in a series of lengthy tables, the
principles upon which the choice of parameters is based are illustrated on an example rather
than reporting the parameter values for all the symmetries.

Although the construction of the basis set is not based on mathematical rigour, the choice of
the basis parameters is by no means counterintuitive. It has already been mentioned in Chapter
4 that by tuning the parameters k and κ and the indices n and ν, the radial spread of the
wavefunction is affected: by increasing n and ν and/or by decreasing k and κ, the oscillations
of the single electron Sturmian functions Sk

nl and Sκ
νλ are moved further away from the nucleus,

and the opposite. Sturmian functions with high n and ν or low k and κ can be used for a
description of states where one or both electrons on average move far away from the nucleus.

It should be clear that in order to adequately describe continuum, which is characterised
by oscillations of the radial part in the asymptotic region of the wavefunction, the basis should
include two electron Sturmian functions with high n and ν. Since the same basis is used to
describe wavefunctions close to the nucleus, this implies a large number of basis functions.
The need for a large basis size may be at least partly compensated by adding Sturmian sets
where one or both scaling parameters ks and κs are small. Furthermore, by choosing ks 6= κs,
asymmetrical two electron states (e.g., high lying members of Rydberg series) can be efficiently
described. With appropriate scaling parameters, excellent results are obtained even for low
total angular momenta, for which the electron movement can be highly correlated: with a single
pair of scaling parameters (k, κ), the energy of the lowest singly excited 1F o state is calculated
accurately to seven decimal places with the basis of only 168 two electron basis functions [82].

As has already been described in Chapter 4, eigenstates of H0 are expanded in a basis of
Sturmian functions as [cf. Eq. (4.9)]

ΨLMSMSπ =
∑

s

∑

l,λ

∑

n,ν

xksnlκsνλ
LMSMS

ψksnlκsνλ
LMSMS

, (5.27)

where the summation indices n and ν take the values [82]

n = l + 1, . . . , l + ∆nls ,

ν = λ + 1, . . . , λ + ∆νλs .
(5.28)

Similarly as was done for 1Se doubly excited states [82, 105], various sets of Sturmian functions
are used. As an example, basis parameters used in the calculation of singly and doubly excited
1De states are shown in Tables 5.1 and 5.2. For doubly excited states below N = 2, one of the
values of the scaling parameters is chosen in a way to approximately describe electron motion
in the n = 2 shell. Since the nuclear charge is effectively screened by the presence of another
electron, the parameter k is set to the value

k =
Z − σk

n
= 1.5 . (5.29)

To be able to obtain several doubly excited states by means of a single diagonalisation, various κs

values are used to describe different average distances between the two electrons. As mentioned,
singly and doubly excited states are obtained in a single diagonalisation. Therefore, to accurately
calculate the wavefunction near the origin, as required by low lying singly excited states, a set
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s k κ ∆n ∆ν

1 2.0 2.0 15 15
2 1.0 0.6 9 10
3 1.5 1.0 9 10
4 1.5 0.3 9 20
5 0.1 0.7 17 8
6 1.5 0.04 9 25

Table 5.1: Nonlinear scaling parameters k and κ used in the calculation of 1De basis states.

l λ sets

0 2 1 2 3 4 5 6
1 1 1 2 3 4 5 6
1 3 1 2 3 4 5 6
2 2 1 2 3 4 5 6
2 4 1 2 3 4 5 6
3 3 1 2 3 4 5 6
3 5 2 3 4 5
4 4 2 3 4 5
4 6 2 3 4 5
6 6 2 3 4 5

Table 5.2: Sets of Sturmian functions used used in the calculation of 1De basis states. The
indices in the last column refer to the designations in Table 5.1.

of basis functions with k = κ = 2.0 is also included. Finally, to account for the case of high
average radial distances of the electrons, k = 0.1 and κ = 0.7 is used.

So far, nothing has been told about the single electron angular momenta l and λ. According
to the independent electron model, for a chosen L, three Rydberg series exist for doubly excited
states with parity π = (−1)L below N = 2. They are described by configurations 2s nL,
2p n(L − 1), and 2p n(L + 1). For states with parity equal to π = (−1)L+1, a single Rydberg
series described by configurations 2p nL exists. We take the values s, p and L, L±1 for the values
of l and λ, but extend the basis by adding Sturmian functions with (l+1) (λ−1), (l+2) (λ−2),
etc., and functions with (l + 1) (λ + 1), (l + 2) (λ + 2), etc., as shown in Table 5.2.

It turns out that the accuracy of the resonances characterised by small energy widths can be
enhanced, if Sturmian functions with l 6= λ and ks 6= κs are complemented with the functions
where the role of ks and κs (or, which is the same, the role of l and λ) is interchanged. This
effectively increases the number of basis functions with which the continuum cuts are described.
The parameters from Tables 5.1 and 5.2, enhanced with Sturmian functions with ks and κs

interchanged, are used to obtain the energies of singly and doubly excited states from Appendix
E. The basis for other angular momenta L and parities π, as well as for triplet (S = 1) states,
can be constructed in a similar manner.

At the end it should be told that although basis parameters are optimised for states below
N = 2, the calculations show that with basis sets like the one presented in Tables 5.1 and 5.2,
doubly excited states converging to higher thresholds, specifically, N = 3 and N = 4, are also
obtained in the same diagonalisation. In Table 5.3, results for some of the 1F o doubly excited
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states are compared to the values found in the literature.

present refs.
−E Γ/2 −E Γ/2

N = 3 0.304219765 1.628215(-3) 0.30424196 1.62598(-3)
0.277962218 4.5104(-5) 0.2779623 4.51(-5)
0.261015081 3.45662(-4) 0.2610194 3.46(-4)
0.257868730 2.37647(-4) 0.257874 2.37(-4)
0.253415163 2.6101(-5) 0.2534148 2.62(-5)
0.251427649 6.425(-6) 0.251432 6.35(-6)

N = 4 0.187917520 2.175544(-3) 0.187912 2.175(-3)
0.179125885 1.599944(-3) 0.179127 1.598(-3)
0.166283775 3.9188(-5) 0.1662838 3.92(-5)
0.162109297 9.81624(-4) 0.1621167 9.7950(-4)
0.158828646 1.7946(-5) 0.1588291 1.79(-5)
0.157561238 1.156539(-3) 0.157558 1.154(-3)
0.156071112 5.4969(-5) 0.156072 5.510(-5)
0.152330141 7.51738(-4) 0.15233 7.50(-4)

Table 5.3: Doubly excited 1F o states converging to the N = 3 and N = 4 thresholds. Present
calculations are compared to the results of Bhatia and Ho [106] (right). Results are reported to
nine decimal places, but the accuracy of the calculations is not checked.

5.4 Implementation

5.4.1 Radial integrals

Due to various nonlinear scaling parameters (ks, κs) of the Sturmian basis set, orthogonality
relations of Laguerre polynomials cannot be used in the evaluation of the integrals. Instead, in-
tegration is performed numerically. Since the integrands have the form of a polynomial weighted
by an exponential function and the integral is evaluated on an interval [0,∞), Gauss-Laguerre
type quadrature formulas are used [80]. Using an N point quadrature formula guarantees, up to
the machine precision, exact results for polynomials of the order not greater than 2N −1. In our
case, the basis for each total orbital momentum L and parity π consist of Sturmian functions
with polynomial orders n, ν . 40. Polynomials of highest orders appear in the calculation of
matrix elements of the two particle operator |r1 − r2|−1. The form of the integrand – a product
of a couple of two electron Sturmian functions – in this case suggests that N ≈ 80 should be
used. It turns out that using double precision IEEE floating point arithmetics, numerical errors
due to near cancellation are still bearable in this case.

The Gauss-Laguerre integration formula of the order N is

∫ ∞

0
e−xf(x) dx ≈

N
∑

k=1

wkf(xk) . (5.30)

In Eq. (5.30), f(x) is an arbitrary integrable function defined on the interval [0,∞), and xk

denotes the kth zero of the (non associated) Laguerre polynomial LN (x) ≡ L0
N (x). The weights
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wk are obtained from [107]

w−1
k =

N−1
∑

j=0

L2
j (xk) . (5.31)

Since the integrals involving the single particle operators of the total Hamiltonian have the form
(cf. Appendix B)

∫ ∞

0
dr e−KrP (r) , (5.32)

where P (r) is a polynomial and K is a real positive number, Eq. (5.30) can be applied directly
in this case. Slater integrals [Eq. (B.18)], however, which are used in the calculation of inter
electron potential matrix elements, involve a double integral,

∫ ∞

0
dr1 e−K1r1

∫ ∞

0
dr2 e−K2r2P1(r1)P3(r1)

rq
<

rq+1
>

P2(r2)P4(r2)

=

∫ ∞

0
dr1 e−K1r1P1(r1)P3(r1)

1

rq+1
1

∫ r1

0
dr2 e−K2r2P2(r2)P4(r2) rq

2

+

∫ ∞

0
dr1 e−K1r1P1(r1)P3(r1) rq

1

∫ ∞

r1

dr2 e−K2r2P2(r2)P4(r2)
1

rq+1
2

,

(5.33)

where r< = min{r1, r2} and r> = max{r1, r2}, K1 and K2 are real positive constants, and P1,
P2, P3, and P4 are polynomials. To be able to use the quadrature formula (5.30) to evaluate
the integrals in Eq. (5.33), the order of integration in the first term on the right hand side is
changed and the substitution r1 = r2(ξ + 1) is made:

∫ ∞

0
dr1 e−K1r1P1(r1)P3(r1)

1

rq+1
1

∫ r1

0
dr2 e−K2r2P2(r2)P4(r2) rq

2

=

∫ ∞

0
dr2 e−K2r2P2(r2)P4(r2) rq

2

∫ ∞

r2

dr1 e−K1r1P1(r1)P3(r1)
1

rq+1
1

=

∫ ∞

0
dr2 e−K2r2P2(r2)P4(r2)

∫ ∞

0
dξ e−K1r2(ξ+1)P1(r2(ξ + 1))P3(r2(ξ + 1))

1

ξq+1
.

(5.34)

Eq. (5.30) can now be used twice to evaluate the double integral in Eq. (5.34). The second term
in Eq. (5.33) is obtained from Eq. (5.34) if the interchanges r1 ↔ r2, K1 ↔ K2, P1 ↔ P2, and
P3 ↔ P4 are made.

In the present calculations, the Gauss-Laguerre zeros and weights are tabulated using Math-
ematica [108], and the tables are incorporated into the program codes. To save computation
time for integrals which involve low order polynomials, quadrature tables of several sizes N are
used. Integration routines automatically choose the suitable table by examining the polynomial
order of the integrand: the shortest quadrature table that still gives an exact result is used. The
accuracy of the numerical integration has been well tested. For Sturmian functions of highest
orders, numerical results agree with the exact results to at least twelve decimal places.

5.4.2 Calculation and diagonalisation of the Hamilton matrix

To express the total Hamiltonian H with the field free solutions, the matrices H0(
1L

π
) are first

calculated. We choose not to seek the optimal value of the Θ parameter, but set it to the
value Θ = 0.2. In the present calculations, field free eigenstates with L ≤ Lmax ≡ 10 of even
and odd parities are used to represent the eigenstates of the total Hamiltonian. For each 1Lπ, a
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typical basis consists of approximately N(1Lπ) ≃ 10000 Sturmian functions. Eliminating linearly
dependent vectors with the threshold parameter ǫ set to

ǫ = ρ max
1≤i≤N

{σi} ≡ ρ σ1 , ρ ≡ 10−12 , (5.35)

(s. pg. 64) results in a reduced basis of size P (1Lπ) ≃ 8000. The reduced basis Hamilton
matrix H′

0 is diagonalised, and from the calculated eigenvectors, only those column vectors
x′i are chosen, for which Re EiΘ ≤ Emax ≡ −0.2265 a.u. The threshold energy Emax is set
high enough to include some of the resonances converging to the N = 3 threshold (EN=3 =
−2/9 a.u. ≈ −0.2222 a.u.), as well as the N = 2 continuum. After restricting the calculation
to the selected eigenvectors, the resulting total Hamilton matrix H which contains all of the
included symmetries 1Lπ has dimensions 2557 × 2557 (i.e., Q = 2557).

Since matrix sizes of the individual matrices involved in the computation are relatively small,
an exact diagonalisation is used. We use the well established LAPACK (Linear Algebra Package)
routines [109]: the real symmetric positive definite overlap matrices B(1Lπ) are diagonalised
using the specialised packed storage routine DSPEV, while for the complex symmetric matrices
H′

0(
1Lπ) and the total Hamilton matrix H, the ordinary eigenproblem routine for general complex

matrices ZGEEV is used. The accuracy of the calculated eigenvectors and eigenvalues is not

improved by inverse iteration.
The computer codes for the calculation of matrix elements of the matrices H0(

1Lπ) and H,
photoionisation and inelastic scattering cross section, and various utility programs are written in
C++. It should be noted that the programs are portable and platform independent. Since the
matrices are not sparse and a large number of matrix elements therefore need to be calculated,
the codes for the matrix element calculation are parallelised, i.e., they are written in a manner
that allows the problem to be solved on parallel computers, e.g. clusters or SMP (Symmetric
Multiprocessing) machines. Since MPI (Message Passing Interface) libraries are widely used,
standardised, and have been ported to many architectures and operating systems, we choose
them for the implementation of our codes.

A very simple distribution among the parallel processes is used: if nproc processes exist,
rows of a N × N matrix are divided into chunks of nproc rows. The first process calculates the
first row, the second process the second row, etc., until all the rows in the current chunk have
been calculated. The procedure is repeated on each of the ⌈N/nproc⌉ chunks. Beside calculating
the matrix elements, the first process stores the matrix and takes care of the inter process
communication with the other nproc − 1 processes.

All the calculations were performed on a PC workstation with a 2400 MHz 64-bit dual
core microprocessor and 4 GB RAM. A typical computation time for the calculation of matrix
elements of a single matrix H0(

1Lπ) is approximately 16 hours for nproc = 2, whereas the time
needed for its diagonalisation is typically around 32 hours. Note that the timing reported here
for the diagonalisation of the matrices applies for the non parallel eigensolver routines (i.e., for
nproc = 1).
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Chapter 6

Results

This chapter is dedicated to the presentation of results which were calculated with methods
described in Chapter 4 and to (re)interpretation of some published and yet unpublished measured
data.

We have accurately calculated singly and doubly excited singlet states up to n = 15 and up to
the total angular momentum L ≤ 10 in the zero electric field. The energies, autoionisation and
fluorescence widths of the states are tabulated in Appendix E and compared with the literature
output. Most of the existing values for doubly excited states refer to 1Se (up to n = 15) and
to 1P o series (up to n = 10) while for the few other series (1P e, 1De, 1Do, 1F o and 1Ge) only
the numbers for the lowest lying members have been published before. We could not find any
previously published data on doubly excited states with 1F e and 1He,o − 1N e,o symmetry. As
mentioned before, these states were further employed to represent doubly excited states in the
non zero electric field.

6.1 Stark maps

To characterise the features in the photoionisation and inelastic scattering spectra that emerge
when the external field is applied, we examine the effect of the field on the eigenstates of the
total Hamiltonian. This is commonly done by means of the Stark map, a diagram which is used
to present the evolution of the energy levels with the applied electric field strength. In the Stark
maps shown in Figs. 6.1 and 6.2, the dependence of the energy levels on the field strength is
shown for the parallel (F ‖ P ) and perpendicular (F ⊥ P ) orientations of the polarisation of
the incident photons with respect to the electric field vector. The energy region in Figs. 6.1 and
6.2 comprises n = 7, n = 8, and n = 9 resonances. The energy scale in the figures is shifted
by 0.00229715 eV to account for the fact that the calculated ground state is too loosely bound
(i.e., its energy is too high). Henceforth, the spectra displaying Stark maps will be shifted
by the given value. The Stark maps are obtained by seeking the coefficient with maximum
modulus in the expansion over the field free states [Eq. (4.42)] for each of the eigenvectors of the
total Hamiltonian. The symmetries 1Lπ of the leading components can thus be represented by
symbols of different shapes and colours. Note that for F ‖ P , the Stark diagram includes only
the states which evolve with electric field from the zero field states 1Lπ with parity π = (−1)L.
This is because for M = 0, for this particular orientation of the electric field and polarisation
vectors, mixing between the states with parities equal to (−1)L and for those with parities
(−1)L+1 is exactly zero, i.e., the states of both types form two non interacting sub blocks of
the total Hamilton matrix. As a consequence, the states with parities equal to (−1)L+1 remain

73



74

100

80

60

40

20

0

F
 [k

V
/c

m
]

65.2565.2065.1565.1065.0565.0064.95
E [eV]

M = 0 1Se 1Po

1
D

e 1
F

o 
1
G

e 1
H

o

1Ie 1Ko 
1
L

e 1
M

o

6a 
1
P

o
7a 

1
P

o
8a 

1
P

o
9a 

1
P

o
6c / 7b 

1
P

o 7c / 8b 
1
P

o
8c / 9b 

1
P

o

F
igu

re
6.1:

S
tark

m
ap

for
th

e
p
arallel

ex
p
erim

en
tal

setu
p

(F
‖

P
).

T
h
e

legen
d

sh
ow

s
th

e
sy

m
m

etry
1L

π
of

th
e

lead
in

g
ex

p
an

sion
co

effi
cien

t.



C
h
a
p
ter

6
–

R
esu

lts
75

100

80

60

40

20

0

F
 [k

V
/c

m
]

65.2565.2065.1565.1065.0565.0064.95
E [eV]

1Pe 1Po 1De 1Do 
1
F

e 1
F

o 1
G

e 1
G

o 
1
H

e 1
H

o 1
I
e 1

I
o 

1Ke 1Ko 1Le 1Lo 
1
M

e 1
M

o

|M| = 1

6c / 7b 
1
P

o
7c / 8b 

1
P

o
8c / 9b 

1
P

o
6a 

1
P

o
7a 

1
P

o
8a 

1
P

o
9a 

1
P

o

F
igu

re
6.2:

S
tark

m
ap

for
th

e
p
erp

en
d
icu

lar
ex

p
erim

en
tal

setu
p

(F
⊥

P
).

T
h
e

legen
d

sh
ow

s
th

e
sy

m
m

etry
1L

π
of

th
e

lead
in

g
ex

p
an

sion
co

effi
cien

t.



76

unaccessible from the ground state for the parallel setup.
Many states with various symmetries 1Lπ lie close in energy to the a, b, and c 1P o states,

which are directly accessible from the ground state with photoexcitation. It is therefore expected
that even for moderate n, contributions originating from a large number of states (including high
angular momenta) will be observed in the photoionisation spectra. But it turns out, that the
field induced coupling is considerable only for some of the states, for which the energies lie close
to the energies of the 1P o a states.
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6.2 Photoionisation

The accurate calculation of photoionisation spectra is not merely a distraction from the path
leading to the calculation of the inelastic scattering cross section. As a start, photoionisation
cross section serves as a test of the validity of the current calculations in the electric field.
More importantly, it turns out that due to the experimental setup used to measure the fluores-
cence yield, the measured spectra are superpositions of the photon and photoion signals. The
calculation of the accurate photoionisation cross sections is therefore essential for an accurate
interpretation of the measured inelastic scattering cross section.

6.2.1 Comparison with experiment

In the following, we compare the calculated photoionisation cross section spectra with the ex-
perimental data by Harries et al. [44]. It should be mentioned that, at the time of writing,
these are the only available measurements of the photoionisation cross section below the N = 2
threshold of the helium atom in high static electric fields. The data is recorded for the parallel
experimental geometry only, whereas no experiments for F ⊥ P exist. Furthermore, only quali-
tative comparison of the present calculations with the results found in the literature is possible:
no calculations of the photoionisation cross section for high field strengths for F ‖ P have been
published, and no calculations whatsoever are available for F ⊥ P .

An example of a calculated photoionisation spectrum is shown in Fig. 6.3. Even though
the electric field strength is as low as 3 kV/cm, the calculated spectrum exhibits a rich level
structure already in the region of n = 8 and n = 9 resonances. The spectral details are almost
completely smeared out by the typically available experimental resolution.

It should be noted that due to the finite basis size used in the calculation of the cross
section, the calculated spectra may depart from the actual photoionisation cross section by
an arbitrary smooth energy dependent background. This is a consequence of an inadequately
represented N = 1 continuum cut. Since the energy region where the cross section is calculated
is relatively narrow, the contribution of the missing continuum eigenstates is fairly constant.
Owing to the latter shift, the calculated cross section can become negative for very narrow
resonances. Although the calculated spectra may be vertically shifted, relative intensities of the
photoionisation peaks in the region of resonances below N = 2 are still calculated correctly.
Since the absolute cross section is not required for the interpretation of the experimental data,
the calculated spectra suffice for the identification of contributions of the individual eigenstates
describing the helium atom in an external electric field.

In a typical experiment, the wealth of field induced spectral features is smeared by an
instrumental function with FWHM of the order of 1 meV. The effect of finite experimental
resolution in Fig. 6.3 is modelled by a convolution with a Gaussian with 1.4 meV FWHM (cf.
Appendix D), since this is the experimental broadening reported by Harries et al. As will be seen
shortly, for a discernible effect of the electric field in the photoionisation spectra, field strengths
of an order of magnitude larger are required in the n = 6 and n = 7 energy region.

In Fig. 6.4, measured and calculated photoionisation spectra for several values of the electric
field strength F are shown for the case F ‖ P . In the experiment performed by Harries and
coworkers, the experimental ion yield signal is “normalized to the current of electrons in the

storage ring and the dwell time” [44]. To be comparable to the measured ionisation signal,
the calculated spectra are scaled to match the size of the individual features above the 6a 1P o

resonance. Where possible, the size of the 6a 1P o peak amplitude is matched. The multiplication
factors used in Fig. 6.4 are taken constant for all the calculated spectra, except for the 50.5
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kV/cm, where the theoretical spectrum is additionally scaled by the factor of approximately
1.47 to agree with the size of the 6a 1P o resonance. The energy scale of the calculated spectra is
used for alignment of the measured photoionisation signal. The spectra are translated vertically
for clarity.

The overall agreement between the measurement and the theory is quite good. For the
low field strengths, large scale oscillations are present. The noise level of the first few spectra
reaches the amplitudes of the small field induced features, and the comparison with the theory is
therefore rendered difficult. For the field strengths above 30 kV/cm, however, the features close
to the 6a 1P o resonance become more pronounced and can be well discerned. The experimental
data shown in Fig. 6.4 confirms the predictions of Chung et al. [42], who used the saddle point
complex rotation method to calculate the order of magnitude of the effects of externally applied
electric fields in photoionisation spectra for this region.

A wider energy region of n = 6 and n = 7 doubly excited states is shown in Fig. 6.5 for
the case of the electric field strengths of 50.5 kV/cm and 84.4 kV/cm. The experimental data
is scaled to match the amplitudes of the calculated peaks, and the spectra are again translated
along the ordinate. The agreement between the theory and the experiment is rather good. It is
to be noted that since the theoretical description used here is capable of completely describing
the spectral features at relatively high fields, we would expect better agreement at lower electric
fields. At the moment it is not clear what kind of atomic effect might be responsible for large
oscillations which are recorded in the experimental spectra.

Fig. 6.5 also presents the calculated spectra for the perpendicular (F ⊥ P ) experimental
setup. Compared to the parallel geometry, the spectra for F ⊥ P reveal several prominent new
peaks. Identification of the features in the photoionisation cross section is the subject of the
next subsection.

We conclude this subsection with Fig. 6.6. A complete series of calculated spectra for all
values of the electric field strength and both polarisations is shown. For reference, the zero field
photoionisation spectrum is also included.

6.2.2 Identification of states and the propensity rule

As mentioned, the peaks in the photoionisation spectra are identified by examining the field
dependence of the calculated energy levels. In Figs. 6.7 and 6.8, the calculated photoionisation
cross section in the n = 6 and n = 7 energy region is shown for both orientations of the
polarisation vector for the field strengths selected by Harries et al. [44]. The spectra are again
broadened with a Gaussian with 1.4 meV FWHM and translated vertically so that the baseline
corresponds to the electric field strength (left axis). The classification scheme of Lipsky is used:
the levels with the leading components belonging to the a, b, and c series are marked red, blue,
and green, respectively. As can be seen from Figs. 6.7 and 6.8, the features originating from the
states with parity equal to (−1)L+1 are only present for F ⊥ P , as expected.

While the prominent a 1P o resonance can be clearly identified for n = 6, the identification of
n = 7 resonance becomes difficult at high electric fields. The amplitudes of the a 1P o resonances
are decreased: resonance strengths of the a 1P o states are redistributed among the neighbouring
resonances. The latter property is described by a sum rule by Fang and Chung [110]: for a given
set of basis functions, the total sum of all resonance strengths (i.e., the sum of all integrated
resonance cross sections) is shown to be invariant under the change of the electric field strength.
The reader should note, however, that the sum rule described in Ref. [110] holds exactly only if
the radiative decay is neglected, as has already been explained in Chapter 4.

Due to field induced mixing, many states can be excited that have previously been unacces-
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sible from the ground state. In the case of F ‖ P , the states following the 6a 1P o resonance
are, in order of increasing energies, 6a 1Ge, 1F o, 1Ho, and 1Ie. The zero field LSπ symmetries
and classification labels of states are written at the bottom of the plot. The labels in square
brackets follow the (zero field) energy ordering of states of individual series members. Following
the four 6a states is a group of 6b states with symmetries 1F o, 1De, 1Ge, and 1He. The region
of n = 6 resonances ends with the 6c 1Ge, 1F o, 1De, 1P o states, and the 6b 1Se state. Similar
patterns occur in the n = 7 region, where additional contributions of states with higher angular
momenta are present. The situation is even more complicated for the perpendicular orientation,
where, as mentioned, states with parities (−1)L+1 are also induced by the electric field.

With the underlying Stark map, the identification of the peaks in the photoionisation spectra
is greatly simplified. For example, for the case F ‖ P , it is straightforward to follow the evolution
of the 6a 1De state with electric field. It can be seen by inspecting Fig. 6.1 that the small feature
directly preceding the 6a 1P o resonance at 84.4 kV/cm is attributed to a state of 1De symmetry,
and not to a 1Do state, as suggested in Ref. [44]. Since the state is energetically well separated
from the other states, it may be deduced that the leading component of the state is 6a 1De, and
the calculations show that this is indeed the case.

(a) (b)

Figure 6.9: The propensity rule due to Tong and Lin [45]. Stark avoided crossings are shown. The
states belonging to the same group (denoted by A) according to the a∗, b∗, and c∗ classification
do not cross (left). The states from different groups (denoted by A and B) are allowed to cross.

The strength of the Stark induced mixing of close lying states can be assessed by the so
called propensity rule due to Tong and Lin [45]. In order to describe it, a short comment
about the classification of doubly excited states is needed. The classification scheme used here,
which follows the ideas of Lipsky, differs from the scheme used by Tong and Lin. Rather than
introducing new short hand notations for the three series, the authors choose to change the

established meaning of the a and b labels for states with angular momenta L ≤ 2 and parity
π = (−1)L. The labelling used in Ref. [45] is not the one suggested by Lipsky.1 Instead of
using the labels to simply enumerate different Rydberg series according to increasing energy of
the first series members, Tong and Lin use the a, b, and c labels to group the states of similar
correlation character. To prevent further confusion, we use a∗, b∗, and c∗ for the classification
used in Ref. [45]. The transition from abc to a∗b∗c∗ labelling may be performed by means of
Table 6.1. The Stark maps of the n = 6 and n = 7 energy region using the a∗b∗c∗ scheme are
shown in Figs. 6.10 and 6.11.

With the new classification, the propensity rule of Tong and Lin for constructing the Stark
map is: “. . . Stark induced states originating from the same group do not cross, while those

1Cf. Appendix E.
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Lipsky 1Se 1P o 1De 1F o 1Ge . . . Tong & Lin

a (1, 0)+ (0, 1)+ (1, 0)+ (1, 0)0 (1, 0)0 . . . b∗

b (−1, 0)+ (1, 0)− (0, 1)0 (0, 1)0 (0, 1)0 . . . a∗

c (−1, 0)0 (−1, 0)0 (−1, 0)0 (−1, 0)0 . . . c∗

Table 6.1: The classification labels used by Tong and Lin [45]. The (K, T )A correlation quantum
numbers are given. The a and b states of Lipsky which are marked magenta are relabelled to
a∗, whereas the states marked cyan are relabelled to b∗. All the states with L ≥ 3 and parity
(−1)L are labelled in the same manner as 1F o and 1Ge. The c states, which are marked green,
transform to c∗. The states with parity (−1)L+1 are labelled as a∗, and are not included in the
table. The colours are chosen to match the colour coding of Figs. 6.10 and 6.11.

originating from different groups are allowed to cross.” This crossing-non crossing rule of energy
level Stark lines is schematically depicted in Fig. 6.9. As a consequence of the propensity rule,
only the states which evolve from the a∗ states at zero field will be preferentially populated.
The latter is due to the fact that the field induced states derive their oscillator strength mostly
from the 6a∗ and 7a∗ 1P o states. As described by the rule, the prominent peaks for F ‖ P in
Fig. 6.10 near the 6a and 7a 1P o resonances all have the a∗ character. It seems that the rule
applies even better for the F ⊥ P case (Fig. 6.11): the amplitudes of the peaks evolved from
the b∗ and c∗ states remain well bellow the half of the amplitudes of the a∗ states for the n = 7
resonances for F ⊥ P . Furthermore, for n = 6 and n = 7 states the most striking example of
the Stark induced mixing for the perpendicular setup is the evolution of the 6a∗ 1P e and 7a∗
1P e resonances, for which the amplitudes are drastically increased in the electric field. It may
also be seen that at 84.4 kV/cm the contribution originating from the 6a∗ 1Do state becomes
large enough to be resolved from the 6a∗ 1P o peak. The cases of 1P e and 1Do states are good
examples of the possibility to study properties of the LS and parity forbidden states by means
of the electric field.
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Figure 6.12: Magnified view of the 6b∗ 1Se 7b∗ 1P o crossing. The left graph shows the LSπ
symmetry of the leading components of the states (cf. Fig. 6.1), and the right graph shows their
classification according to Lin and Tong.

At the end, a short comment should be made about the diagrams in Fig. 6.9. As can be seen
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by comparing the plots in Fig. 6.12, the form of a crossing of two isolated interacting states is the
form shown in Fig. 6.9b even in the case where the states belong to the same series. Actually,
the gap between the two diagram curves is a measure for the order of magnitude of the coupling
matrix element. The leading components of the states do cross the region of intersection for
the case of 6b 1Se and 7b 1P o, as has been checked by examining the results at 0 kV/cm and
18 kV/cm. This somehow contradicts the propensity rule. Thus, the propensity rule is to be
understood solely as a guide that helps with the interpretation of the Stark maps and with the
estimation of the order of magnitude of the field coupling matrix elements.
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6.3 Inelastic photon scattering cross section

6.3.1 Comparison with experiment

This subsection is dedicated to the comparison of the calculated primary fluorescence spectra
(i.e., inelastic photon scattering spectra) to the VUV fluorescence data of Prince et al. [47] and
the primary fluorescence yield data measured by Rubensson et al. [111].

An example of the calculated inelastic scattering cross section in F ⊥ P geometry and at
F = 3 kV/cm is presented in Fig. 6.13. The spectrum is convolved by a 3 meV broad Gaussian
to account for the finite experimental resolution. As in the case of photoionisation, a wealth
of new structures appears when the external field is applied. Contrary to the photoionisation
spectra, the photon yield signal may be changed considerably when an external field is applied,
even for moderate electric field strengths of the order of a few kV/cm.

Figs. 6.14 and 6.15 show the measured and the calculated spectra with F perpendicular
and parallel to the polarisation vector of the synchrotron light, respectively. For F ⊥ P , the
measured fluorescence yield is normalised to the integrated intensity of the 5c/6b 1P o doublet,
since this is not expected to change strongly with electric field, as is discussed in the next
subsection. On the other hand, the increase of the fluorescence signal at the N = 2 threshold
is used for normalisation for F ‖ P . The energy scale of experimental signal is slightly changed
to match the calculations, whereas the calculated spectra are scaled to one point to match the
experiment.

An introductory comment is required before identifying the contributions of individual peaks
in the fluorescence yield spectra. As may be seen, the intensity of the na 1P o signal is greatly
enhanced when the external field is applied. Part of this intensity increase stems from fluores-
cence generated by collisions of charged particles [47], which originate from the autoionisation
decay of doubly excited states. At high field strengths, and especially for the perpendicular
experimental setup, this signal becomes predominant for the a 1P o states having the highest
autoionisation rates. Therefore, as may be seen in Figs. 6.14 and 6.15, fluorescence yield seems
to follow the ion yield signal: the peaks recorded at high fields start to assume Fano-like shape.
A fair comparison should therefore include the subtraction of this ionic component of the signal.
For the resonances other than na 1P o, this effect is negligible.

For F ⊥ P we note a pronounced series of peaks appearing between each (n − 1)c/nb 1P o

pair and the na 1P o resonance. As will be shown in the next subsection, the latter peaks are
attributed to na 1P e states. On the contrary, the yields of the nb and nc peaks for F ‖ P are
decreased due to Stark induced mixing. Furthermore, for high quantum numbers n, a series of
broad peaks appears at the high energy shoulder of the a 1P o, the intensity and the width of
which seem to increase with the field.

The overall agreement between the measurements and the theory is quite good: the intensities
of the peaks and their positions match the experimental data up to n = 10 or n = 11. As may
be deduced from Fig. 6.13, but also by means of the knowledge obtained in the previous section,
the wide peaks in the high n region are composed of a large number of contributions. These
contributions originate from states containing components with higher angular momenta, and
can be easily induced at sufficiently high electric fields. Since our calculations include the free
states with total angular momenta L ≤ 10, the failure of the calculation in this energy region is
not unexpected.

We conclude this subsection by discussing the experimental data of Rubensson et al. [111].
These spectra are the most relevant for comparison with our theory because they contain only the
signal of the primary fluorescence. Although the overall agreement seems to improve compared
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to previous case, the range of validity of the calculations is still seen to remain approximately
the same (Fig. 6.16).

6.3.2 Analysis of the fluorescence yield spectra

As mentioned, the contributions of individual states in the fluorescence yield spectra in the
external electric field can be identified by examining their evolution from the zero field states.
Plots similar to the Stark maps for photoionisation spectra are shown in Figs. 6.17 and 6.18. The
cross section is calculated for the same field strengths as given by Harries et al., and again the
classification of Tong and Lin is used for the underlying Stark maps. The spectra are broadened
with a Gaussian of 1.4 meV FWHM.

As proposed by the propensity rule for photoionisation, the majority of intense peaks in
F ⊥ P geometry seems to belong to the a∗ series. The most striking examples that conform to
the rule are the peaks which evolve from the 6a∗ and 7a∗ 1Do states. Although the amplitudes
of the peaks are expected to be small (because of the odd parity), the induced coupling is
nevertheless far from negligible.

An apparent change that occurs for F ⊥ P when the external field is applied is the ap-
pearance of isolated a∗ 1P e peaks that gain intensity as the field strength is increased. This
behaviour can be explained if it is remembered that the field coupling is governed by the same
selection rules as the electric dipole transitions for linearly polarised light. For M = ±1 the
field induced coupling to the 1P o states is strong and the radiative decay rate of 1P e states is
high, resulting in an increase of the fluorescence yield. The 1P e peaks are absent in the F ‖ P

geometry. This is a general feature of all states for which the parity is equal to (−1)L+1.
An interesting change also occurs in the parallel configuration (F ‖ P ): the intensities of

(n − 1)c/nb 1P o doublet rapidly decrease. The latter can be understood as follows. Due to
the presence of strongly autoionising 1Se and 1De states in the near vicinity, the field induced
coupling of the doublet results in a substantial increase of the autoionisation decay rate. This, in
turn, means that the fluorescence branching ratio is drastically reduced, and the peak intensity
in the photon yield spectrum is decreased. The effect is weaker in F ⊥ P geometry, since in
this case due to the M = ±1 rule, the Stark induced coupling to the close lying 1Se states is
zero. This is also the reason why for F ⊥ P , the integrated intensity of the doublet was used
for the normalisation of spectra.
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Figure 6.14: Comparison of the spectra measured by Prince et al. [47] and the calculated total
fluorescence yield for F ⊥ P . The calculated spectra are scaled and broadened with a Gaussian
with 3 meV FWHM (2.5 meV FWHM for 0 kV/cm) to match the experiment. The spectra are
translated vertically for clarity. The measured yield is normalised to the integrated intensity of
the 5c/6b 1P o doublet. The blue curve represents the photon scattering signal, the green the ion
signal, and the red curve their sum. See text for a detailed explanation.
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6.4 The time domain

Just recently, Žitnik et al. measured the lifetimes of several dark 1P e states in the weak electric
fields for F ⊥ P . The experiment was performed at Gas Phase photoemission beamline at
Elettra synchrotron in the multi bunch mode [48]. As the field was increased from 1.6 to
6.6 kV/cm, the shortening of the lifetime was observed for series members with n = 9 − 12.
These states were chosen because the lower n states have too low oscillator strengths at weak
fields, while on the high n side, the available energy resolution of the incoming photons was not
enough to isolate a single state. The effect is explained by the relatively strong increase of the
autoionisation decay rate for these states in the non zero field (∝ F 2). Because of the latter,
the total decay probability is increased, since in such weak fields, the zero field fluorescence
decay rate does not change substantially. We note in Fig. 6.4 that our first order perturbation
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Figure 6.19: Comparison of the measured lifetimes of 1P e na states with our calculation. First
order perturbation method (dotted line), complex rotation method (full line).

calculations, as well as the complex rotation method, predict the same trend but they start to
depart from each other at highest fields. The effect seems to be a little overestimated by the
calculations, although the recent simulations show that the actual experimental field calibration
might also be wrong for approximately 10%. This would bring measured lifetimes into closer
agreement with theoretical predictions.
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6.5 Radiation damping of c
1
P

o resonances

As has been mentioned several times throughout this work, the c 1P o states are characterised
by small autoionisation decay rates. Their contributions to the photoionisation spectrum are
shown to be weak, but discernible. It turns out, however, that in order to describe the intensities
of the c states in the measured photoionisation spectra, the inclusion of radiation corrections is
essential. As can be seen from the treatment of radiation damping presented in Chapter 4, the
amplitudes of the peaks which belong to the c states are a very sensitive measure of the ratio of
the fluorescence and autoionisation decay rates (this is also shown in [11]).

Unfortunately, the accuracy of the present calculations does not suffice for the determination
of the autoionisation widths of c 1P o states. Furthermore, to date, no reliable calculations of
widths and asymmetry parameters exist to our knowledge for the higher lying states of this
series. This also appears to be the case for the state of the art calculations of Rost et al. [4].
Nevertheless, for the lowest lying 3c 1P o state, the parameters from Ref. [4] agree well with our
calculations (except for the autoionisation width, which has not been calculated correctly in our
case). We therefore assume that the tabulated values are correct for the 3c state, and use it to
assess autoionisation widths for the higher Rydberg states. This is done in the following way.
The energy of a doubly excited state characterised by a set of single electron principal quantum
numbers (N, n) can be written in the frame of quantum defect theory as [4]

EN,n = − Z2

2N2
− (Z − 1)2

2ν2
. (6.1)

We have used ν to denote the effective principal quantum number. The corresponding quantum
defect is defined as

δn = n − ν . (6.2)

Throughout a chosen series, the quantum defect δn, the asymmetry parameter qn, and the
reduced parameters

Γ∗
n ≡ Γnν3

B∗
n
2 ≡ B2

nν3
(6.3)

can be shown to be approximately constant. In Eq. (6.3), Bn is the real part of the complex
scaled matrix element (cf. Chapter 4). The autoionisation widths of higher lying states may
therefore be extrapolated from the lower states (this is sometimes referred to as the n3 rule).
This property has already been used by Liu et al. [19], but also by several other authors. Since
the calculated asymmetry parameter q = −22.1 for the n = 3 state is close to the value of Rost
et al. (q = −23.4) and since the measured [27] and calculated [19] decay rates indicate that the
order of magnitude of the half-width calculated by Rost et al. is correct, we choose their Γ∗

value for extrapolation. To be more explicit, we set the values of q and Γ∗ to

qn(c 1P o) ≡ const. = −22.1 and Γ∗
n(c 1P o) ≡ const. = 3.4596 × 10−7 . (6.4)

The parameters of the 1P o resonances below the N = 2 threshold used in the calculation of the
photoionisation and inelastic scattering cross section are tabulated in Table 6.2. To be able to
compare the results to the values in Ref. [4] we have introduced

(B̃∗
n)2 = 2(Re EnΘ − Eg)B2

n ν3 . (6.5)

The results of the calculations using the above 3c parameters are shown on the bottom of
Fig. 6.20. As can be seen from comparison with the measured photoionisation signal (Fig. 6.20,
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top), the amplitude of the calculated 3c peak is too low. This indicates that the calculated
autoionisation width and/or the asymmetry parameter of the 3c state may be wrong. In fact,
from the comparison with the experiment, it follows that the autoionisation width Γ and the q
parameter are too low. Note that the effective q parameter is drastically reduced (by a factor
of Γ/(γ + Γ), cf. Chapter 4) due to radiation damping. For Γ ≪ γ, the peaks may be almost
completely smeared out.

In contrast to the photoionisation signal, the calculated photoabsorption cross section may
be seen to agree pretty well with the measurements of Prince et al. [11]. This stems from the fact
that the for the 3c state, the peak intensity for the case of photoabsorption comes predominantly
from the inelastic photon scattering, which is largely unaffected by the autoionisation decay since
the radiative widths are at least one order of magnitude larger than the autoionisation widths.
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Table 6.2: Parameters of 1P o doubly excited states below the N = 2
threshold. The last two columns (marked by †) are from Ref. [4].

−E Γ/2 ν Γ∗ (B∗)2 q (B̃∗)2 q (B̃∗)2

2a 0.693106607 6.86350(-4) 1.61 5.7192(-3) 5.39(-3) -2.77 2.38(-2) -2.77† 2.38(-2)†

3a 0.564080259 1.50540(-4) 2.79 6.5622(-3) 4.47(-3) -2.58 2.09(-2) -2.58 2.10(-2)
4a 0.534361157 6.4152(-5) 3.81 7.1219(-3) 4.53(-3) -2.55 2.15(-2) -2.55 2.15(-2)
5a 0.521503669 3.2888(-5) 4.82 7.3748(-3) 4.56(-3) -2.54 2.17(-2) -2.54 2.17(-2)
6a 0.514733425 1.8992(-5) 5.83 7.5095(-3) 4.58(-3) -2.53 2.19(-2) -2.53 2.19(-2)
7a 0.510726440 1.1924(-5) 6.83 7.5895(-3) 4.59(-3) -2.53 2.20(-2) -2.52 2.19(-2)
8a 0.508158307 7.963(-6) 7.83 7.6410(-3) 4.59(-3) -2.53 2.20(-2) -2.58 2.25(-2)
9a 0.506413686 5.576(-6) 8.83 7.6761(-3) 4.60(-3) -2.53 2.20(-2) -2.5 2.24(-2)
10a 0.505174494 4.054(-6) 9.83 7.7010(-3) 4.60(-3) -2.53 2.21(-2)
11a 0.504262710 3.038(-6) 10.83 7.7194(-3) 4.60(-3) -2.53 2.21(-2)
12a 0.503572348 2.335(-6) 11.83 7.7333(-3) 4.60(-3) -2.53 2.21(-2)
13a 0.503037093 1.834(-6) 12.83 7.7490(-3) 4.61(-3) -2.53 2.21(-2)
14a 0.502613741 1.434(-6) 13.83 7.5863(-3) 4.60(-3) -2.52 2.21(-2)
15a 0.502273028 1.335(-6) 14.83 8.7093(-3) 4.62(-3) -2.52 2.22(-2)

3b 0.597073790 1.922(-6) 2.27 4.4946(-5) 8.67(-5) -4.25 4.00(-4) -4.25† 4.00(-4)†

4b 0.546491860 1.009(-6) 3.28 7.1138(-5) 7.74(-5) -3.32 3.65(-4) -3.32 3.67(-4)
5b 0.527297038 4.88(-7) 4.28 7.6507(-5) 8.02(-5) -3.30 3.81(-4) -3.31 3.83(-4)
6b 0.517936917 2.65(-7) 5.28 7.8007(-5) 8.08(-5) -3.31 3.85(-4) -3.31 3.88(-4)
7b 0.512679737 1.59(-7) 6.28 7.8569(-5) 8.08(-5) -3.31 3.87(-4) -3.32 3.89(-4)
8b 0.509435690 1.02(-7) 7.28 7.8820(-5) 8.08(-5) -3.31 3.87(-4) -3.3 3.94(-4)
9b 0.507294204 7.0(-8) 8.28 7.8948(-5) 8.08(-5) -3.31 3.87(-4)
10b 0.505806870 4.9(-8) 9.28 7.9019(-5) 8.07(-5) -3.32 3.87(-4)
11b 0.504732057 3.6(-8) 10.28 7.9061(-5) 8.07(-5) -3.32 3.87(-4)
12b 0.503930208 2.8(-8) 11.28 7.9085(-5) 8.06(-5) -3.32 3.87(-4)
13b 0.503316151 2.1(-8) 12.28 7.8966(-5) 8.06(-5) -3.32 3.87(-4)
14b 0.502835510 1.5(-8) 13.28 7.0174(-5) 8.06(-5) -3.32 3.87(-4)
15b 0.502452349 3.9(-8) 14.28 2.2886(-4) 8.05(-5) -3.32 3.86(-4)

3c 0.547089825 5(-9) 3.26 3.4596(-7) 2.01(-5) -22.1 9.49(-5) -23.4† 9.29(-5)†

4c 0.527614605 2(-9) 4.26 3.4596(-7) 1.89(-5) -22.1 8.96(-5) -133 8.75(-5)
5c 0.518117242 1(-9) 5.25 3.4596(-7) 1.86(-5) -22.1 8.88(-5) 197 8.66(-5)
6c 0.512790392 7(-10) 6.25 3.4596(-7) 1.86(-5) -22.1 8.87(-5) 91 8.66(-5)
7c 0.509508038 5(-10) 7.25 3.4596(-7) 1.86(-5) -22.1 8.88(-5) 72 8.65(-5)
8c 0.507343946 3(-10) 8.25 3.4596(-7) 1.86(-5) -22.1 8.90(-5)
9c 0.505842475 2(-10) 9.25 3.4596(-7) 1.86(-5) -22.1 8.91(-5)
10c 0.504758391 2(-10) 10.25 3.4596(-7) 1.86(-5) -22.1 8.91(-5)
11c 0.503950219 1(-10) 11.25 3.4596(-7) 1.86(-5) -22.1 8.92(-5)
12c 0.503331706 9(-11) 12.25 3.4596(-7) 1.86(-5) -22.1 8.93(-5)
13c 0.502847834 7(-11) 13.25 3.4596(-7) 1.86(-5) -22.1 8.92(-5)
14c 0.502462325 6(-11) 14.25 3.4596(-7) 1.90(-5) -22.1 9.11(-5)
15c 0.502149666 5(-11) 15.25 3.4596(-7) 1.80(-5) -22.1 8.65(-5)
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Chapter 7

Conclusion

In this thesis, we present the ab initio calculated photoionisation spectra of the helium atom in
the region of doubly excited states below N = 2 in the presence of high static electric fields.
The calculated photoionisation cross section is for the first time capable of reproducing the
experimental data in detail. For the purpose, we have used the method of complex scaling
with a large screened two electron Sturmian basis. The comparison with experimental data
suggests that our results may be reliable up to the field strengths of 100 kV/cm, and may
reach energies about 50 meV below the threshold. Until now, only the Stark maps have been
published for high electric fields [42], together with approximately calculated oscillator strengths
in the parallel (F ‖ P ) geometry [45]. We have also examined the perpendicular geometry and
confirmed the validity of the propensity rule for the Stark mixing, proposed by Tong and Lin
[45]. The preferential mixing in the field occurs between states with similar angular correlation
character, dispersing the oscillator strength of the principal a (a∗) series. Furthermore, we have
predicted the shape of photoionisation spectrum for the F ⊥ P geometry which remains to be
measured. The most notable change should be the presence of the strong signal at the positions
of a∗ 1P e resonances.

The main purpose of this work was to calculate the primary fluorescence yield which is
emitted from the resonant states in the electric field. We have devised the procedure to obtain
the inelastic photon scattering cross sections using the eigenstates of the Stark Hamilton operator
in the complex space. While the bound-continuum interaction has been treated to all orders, the
photon-atom interaction has been treated as a perturbation. Several experimental spectra are
available for comparison, and they were recorded only in relatively weak electric fields. In more
or less all of them, the contamination with ion/electron induced fluorescence signal is present.
This indicates why going to the high electric field strengths may be a challenging experimental
task for the Raman spectroscopy. Nevertheless, we have calculated the total primary fluorescence
yield spectra as functions of the incoming photon energy for both geometries and for the fields
reaching up to 100 kV/cm. The presentation is limited to n = 6−7 manifold of states, since the
comparison with the measured fluorescence yield spectra – after subtracting the ionic component
– shows less satisfactory agreement than in the case of the photoionisation. The interpretation
becomes questionable above n = 11−12. The main reason is probably the lack of higher angular
momentum states in our zero field basis set; only the states with angular momentum L ≤ 10 were
included. There should be no higher angular momentum states than that in manifolds with n ≤
11. At high electric field strengths, however, the manifolds with different quantum numbers n are
mixed: the higher the value of n is, the stronger mixing between the manifolds occurs. The other
reason for moderate agreement is that in some cases the comparison is made with the total VUV
fluorescence yield, which also includes the contribution of the secondary photon. This is emitted
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at the end of the cascade reaching the ground state of the helium atom. In the absence of singlet-
triplet mixing, there should be an exactly one such secondary photon emitted for each primary
photon, so this should not be a problem if it is possible to neglect the effect of non isotropic
photon angular distributions. It then seems that, compared to the photoionisation, the inelastic
scattering spectra represent a more sensitive test for the calculations of the Stark effect. This is
not surprising because the majority of the oscillator strength which is derived from the principal
line is redirected into the fluorescence channel. Especially for higher angular momentum states,
the autoionisation decay rate is strongly suppressed, while the fluorescence signal of all the states
displays similar fluorescence decay rates. Even in high fields, the contribution of the dark states
in photoionisation spectra is still relatively small when compared to the principal line intensity,
while the fluorescence signals are of the same order of magnitude already in the weaker fields,
as shown for the n = 6 manifold. Only some rare examples showing the opposite trend can be
noted.

The direct observations of the total decay rate of resonances are possible in the time domain.
We have reproduced the observed trend of shortening of the lifetimes of the 1P e states upon
application of the electric field. Still, the error bars of the measured lifetimes will have to be
reduced in the future to test more thoroughly the theoretical models.

Further extending the promising approach presented in this work, one could estimate the
initial occupation of singly excited states after the primary fluorescence, i.e., decompose the
fluorescence yield into contributions of different final states. It then seems straightforward to
set the study of dark states by energy selective detection of the secondary fluorescence in the
visible [112], similar to the zero field case [23, 24]; considering photon emission between Stark
affected singly excited states should be the easier part of the problem, as mentioned before.
Determination of angular distribution of the primary fluorescence in the electric field is another
interesting subject which deserves our attention in the near future, especially if the experimental
efforts are done to measure it.

The spin-orbit interaction should be included into the calculation scheme to gain more cred-
ibility at higher n. Finally, we do not believe that the selected methodology can ever make
one reach the threshold – this would imply a very large basis set. However, we have discussed
here only the doubly excited states below the N = 2 threshold. They represent a very small
fraction of eigenstates of the complex scaled Hamilton operator: resonances converging to higher
thresholds which are yet to be studied in the non zero electric field can also be – and have in
fact been – calculated.
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Appendix A

Atomic units

To present the results of the calculations in a clear and compact form, the physical quantities in
this work are expressed in atomic units: their values in SI units are replaced by dimensionless
quantities. Hartree atomic units are used (e, ~, m = 1, 4πǫ0 = 1, c = 1/α, where e is the
elementary charge, m the electron mass, ǫ0 the vacuum permittivity, c the speed of light in
vacuo, and α the fine structure constant).

Most commonly used atomic units expressed in SI units are listed in Table A.1.

quantity symbol numerical value unit

a.u. of charge e 1.60217653(14) × 10−19 As
a.u. of mass m 9.1093826(16) × 10−31 kg
a.u. of action ~ 1.05457168(18) × 10−34 Js

3.13566743(35) × 10−15 eV s
a.u. of length a0 = ~/(α mc) 0.5291772108(18) × 10−10 m
a.u. of energy EH = e2/(4πǫ0a0) 4.35974417(75) × 10−18 J

27.2113845(23) eV
a.u. of time ~/EH 2.418884326505(16) × 10−17 s
a.u. of velocity (αc) a0EH/~ 2.1876912633(73) × 106 m/s
a.u. of electric field EH/(e a0) 5.14220642(44) × 1011 V/m
a.u. of magnetic flux density ~/(e a2

0) 2.35051742(20) × 105 T

Table A.1: Atomic units expressed in SI units. The uncertainty of the last digits is shown in the
parenthesis. The value of the fine structure constant is α = e2/(4πǫ0 ~c) = 7.297352568(24) ×
10−3. All the values are taken from Ref. [113].
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Appendix B

Matrix elements of the Hamilton

operator in Sturmian basis

In this appendix, the expressions for matrix elements of the Hamilton operator in the basis of
Coulomb Sturmian functions are derived. The total Hamiltonian H describing a two-electron
atom with infinitely heavy point nucleus of charge Z in the homogeneous electric field F is
written as

H = H0 + ∆H = T + U + V + ∆H (B.1)

with

T =
p2

1

2
+

p2
2

2
= −∇2

1

2
− ∇2

2

2
,

U = −Z

r1
− Z

r2
,

V = − 1

|r1 − r2|
, and

∆H = −F · (r1 + r2) .

(B.2)

In the following, the matrix elements of individual terms and the elements describing the electric
dipole transitions are derived.

B.1 Kinetic energy

Kinetic energy matrix elements 〈ψknlκνλ
LMSMS

|T |ψk′n′l′κ′ν′λ′

LMSMS
〉 are formed from the single particle

kinetic energy operators by means of

T = −∇2
1

2
− ∇2

2

2
. (B.3)

The orbital integration and summation over the spin variables can readily be performed:

〈Υlλ
LMSMS

|Υl′λ′

L′M ′S′MS′
〉

=
∑

m,µ
ms,µs

∑

m′,µ′

m
s′

,µ′
s

(lmλµ|LM)(1/2 ms1/2 µs|SMS) 〈lm|l′m′〉〈ms|ms′〉〈λµ|λ′µ′〉〈µs|µ′
s〉

= δLL′δMM ′δSS′δMSMS′ δllδλλ′ .

(B.4)
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The last equality follows from the well known orthogonality relations of spherical harmonics and
spin functions,

∫

d2r̂ Y ∗
lm(r̂)Yl′m′(r̂) = 〈lm|l′m′〉 = δll′δmm′

∑

σ

χms(σ)χms′
(σ) = 〈ms|ms′〉 = δmsms′

,
(B.5)

together with the reality and completeness relations of the Clebsch-Gordan coefficients [13, 53].
Since the kinetic energy operator is diagonal in quantum numbers LMSMS , only diagonal
matrix elements will be considered:

〈ψknlκνλ
LMSMS

|T |ψk′n′l′κ′ν′λ′

LMSMS
〉 =

〈〈knl; κνλ|T |k′n′l; κ′ν ′λ〉〉 δll′δλλ′ + (−1)L+S+l+λ 〈〈κνλ; knl|T |k′n′λ; κ′ν ′l〉〉 δlλ′δλl′

+ (−1)L+S+l+λ 〈〈knl; κνλ|T |κ′ν ′l; k′n′λ〉〉 δlλ′δλl′ + 〈〈κνλ; knl|T |κ′ν ′λ; k′n′l〉〉 δll′δλλ′ .

(B.6)

In Eq. (B.6), the double bra-ket notation 〈〈. . .〉〉 denotes the radial parts of the integrals. The
expression can be simplified since radial integrals are symmetric with respect to the interchange
r1 ↔ r2,

〈〈ψknlκνλ
LMSMS

|T |ψk′n′l′κ′ν′λ′

LMSMS
〉〉 = 2

[

〈〈knl; κνλ|T |k′n′l; κ′ν ′λ〉〉 δll′δλλ′

+ (−1)L+S+l+λ 〈〈κνλ; knl|T |k′n′λ; κ′ν ′l〉〉 δlλ′δλl′
]

.
(B.7)

The integrals in Eq. (B.7) are (t = −∇2/2):

〈〈knl; κνλ|T |k′n′l; κ′ν ′λ〉〉 = 〈〈knl|t|k′n′l〉〉〈〈κνλ|κ′ν ′λ〉〉 + 〈〈knl|k′n′l〉〉 〈〈κνλ|t|κ′ν ′λ〉〉
〈〈κνλ; knl|T |k′n′λ; κ′ν ′l〉〉 = 〈〈κνλ|t|k′n′λ〉〉 〈〈knl|κ′ν ′l〉〉 + 〈〈κνλ|k′n′λ〉〉 〈〈knl|t|κ′ν ′l〉〉 ,

(B.8)

where

〈〈kanal|kbnbl〉〉 =

∫ ∞

0
dr Ska

nal(r)Skb

nbl
(r) (B.9)

and

〈〈kanal|t|kbnbl〉〉 = 〈〈kanal|
(

−1

2

d2

dr2
+

1

2

l(l + 1)

r2

)

|kbnbl〉〉

= 〈〈kanal|
(

nbkb

r
− k2

b

2

)

|kbnbl〉〉

=

∫ ∞

0
drSka

nal(r)

(

nbkb

r
− k2

b

2

)

Skb

nbl
(r) .

(B.10)

The last two lines in Eq. (B.10) follow from Eq. (4.2).

B.2 Potential energy

The treatment used for kinetic energy matrix elements is applicable to the nuclear potential
energy operator if we define

U = −Z

r1
− Z

r2
and u = −Z/r (B.11)

and make the replacements T → U and t → u in Eqs. (B.7) and (B.8):

〈ψknlκνλ
LMSMS

|U |ψk′n′l′κ′ν′λ′

LMSMS
〉 = 2

[

〈〈knl; κνλ|U |k′n′l; κ′ν ′λ〉〉 δll′δλλ′

+ (−1)L+S+l+λ 〈〈κνλ; knl|U |k′n′λ; κ′ν ′l〉〉 δlλ′δλl′
]

.
(B.12)
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The radial integrals in Eq. (B.12) are

〈〈knl; κνλ|U |k′n′l; κ′ν ′λ〉〉 = 〈〈knl|u|k′n′l〉〉〈〈κνλ|κ′ν ′λ〉〉 + 〈〈knl|k′n′l〉〉 〈〈κνλ|u|κ′ν ′λ〉〉
〈〈κνλ; knl|U |k′n′λ; κ′ν ′l〉〉 = 〈〈κνλ|u|k′n′λ〉〉 〈〈knl|κ′ν ′l〉〉 + 〈〈κνλ|k′n′λ〉〉 〈〈knl|u|κ′ν ′l〉〉 ,

(B.13)

where

〈〈kanal|u|kbnbl〉〉 = −
∫ ∞

0
dr Ska

nal(r)
Z

r
Skb

nbl
(r) . (B.14)

B.3 Electron-electron interaction

The electron-electron interaction term

V =
1

|r1 − r2|
=

1

r12
(B.15)

represents spin independent internal forces. Matrix elements are therefore diagonal in quantum
numbers LMSMS [13, 53], and only diagonal matrix elements need to be considered:

〈ψknlκνλ
LMSMS

|V |ψk′n′l′κ′ν′λ′

LMSMS
〉 =

[

1 + (−1)l+λ+l′+λ′
]

〈knl; κνλ; LMSMS |V |k′n′l′; κ′ν ′λ′; LMSMS〉

+
[

(−1)L+S+l+λ + (−1)L+S+l′+λ′
]

〈κνλ; knl; LMSMS |V |k′n′l′; κ′ν ′λ′; LMSMS〉 .

(B.16)

As before, the symmetry of the integrals with respect to the r1 ↔ r2 interchange has been used.
Angular parts of the integrals in Eq. (B.16) can be calculated if |r1 − r2|−1 is expressed as a
multipole series. The following relation is obtained as a result [13, 53]:

〈kanala; kbnblb; LMSMS |V |kcnclc; kdndld; LMSMS〉c =

∑

q

Rq
int(ab; cd) (−1)lc+lb+L

{

la lb L
ld lc q

}

〈la‖Cq‖lc〉〈lb‖Cq‖ld〉 . (B.17)

In Eq. (B.17) Rq(ab; cd) denotes the Slater integral

Rq
int(ab; cd) = 〈〈kanala; kbnblb|rq

</rq+1
> |kcnclc; kdndld〉〉

=

∫ ∞

0
dr1

∫ ∞

0
dr2 Ska

nala
(r1)S

kb

nblb
(r2)

rq
<

rq+1
>

Skc

nclc
(r1)S

kd

ndld
(r2) .

(B.18)

The notation r> = max{r1, r2} and r< = min{r1, r2} has been introduced for brevity. For fixed
la, lb, lc, and ld, the summation over q runs over those values for which the triangle relations for
(la, q, lc) and (lb, q, ld) are satisfied [13, 53], as can be seen from

〈j1‖Cq‖j2〉 = (−1)j1
√

(2j1 + 1)(2j2 + 1)

(

j1 q j2

0 0 0

)

. (B.19)

The summation index q is therefore limited to the interval

max{|la − lc|, |lb − ld|} ≤ q ≤ min{la + lc, lb + ld} , (B.20)

with la + q + lc and lb + q + ld even [13, 53]. This, in turn, implies that the parity should be
conserved,

(−1)la+lc = (−1)lb+ld and (−1)la+lb = (−1)lc+ld , (B.21)
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as expected from a scalar operator. Using this latter property, Eq. (B.16) becomes

〈ψknlκνλ
LMSMS

|V |ψk′n′l′κ′ν′λ′

LMSMS
〉 =

2
[

〈knl; κνλ; LMSMS |r−1
12 |k′n′l′; κ′ν ′λ′; LMSMS〉

+ (−1)L+S+l+λ〈κνλ; knl; LMSMS |r−1
12 |k′n′l′; κ′ν ′λ′; LMSMS〉

]

.

(B.22)

B.4 Overlap matrix elements

Overlap matrix elements are treated in a similar manner as the kinetic energy or the potential
energy matrix elements. An expression similar to Eq. (B.7) is obtained:

〈ψknlκνλ
LMSMS

|ψk′n′l′κ′ν′λ′

LMSMS
〉 = 2

[

〈〈knl|k′n′l′〉〉〈〈κνλ|κ′ν ′λ′〉〉 δll′δλλ′

+ (−1)L+S+l+λ〈〈κνλ|k′n′l′〉〉〈〈knl|κ′ν ′λ′〉〉 δlλ′δl′λ

]

.
(B.23)

B.5 Spherical dipole operator

Matrix elements describing the interaction between an atom and an externally applied homoge-
neous electric field or dipole transitions between atomic states in the length approximation are
expressed by means of the spherical dipole operator

Dq = r1C
1
q (r̂1) + r2C

1
q (r̂2) . (B.24)

The operator Dq is spin independent, therefore its matrix elements are diagonal in quantum
numbers S and MS . For S = S′ and MS = MS′ , the matrix element equals to

〈ψknlκνλ
LMSMS

|Dq|ψk′n′l′κ′ν′λ′

L′M ′SMS
〉 = 〈knl; κνλ; LMSMS |Dq|k′n′l′; κ′ν ′λ′; L′M ′SMS〉

+ (−1)L+S+l+λ 〈κνλ; knl; LMSMS |Dq|k′n′l′; κ′ν ′λ′; L′M ′SMS〉
+ (−1)L′+S+l′+λ′ 〈knl; κνλ; LMSMS |Dq|κ′ν ′λ′; k′n′l′; L′M ′SMS〉
+ (−1)L+l+λ+L′+l′+λ′ 〈κνλ; knl; LMSMS |Dq|κ′ν ′λ′; k′n′l′; L′M ′SMS〉 .

(B.25)

To simplify Eq. (B.25), the integration variables r1 and r2 are interchanged. This results
in additional phase factors in the angular parts due to the properties of the Clebsch-Gordan
coefficients,

〈ψknlκνλ
LMSMS

|Dq|ψk′n′l′κ′ν′λ′

L′M ′SMS
〉 =

2

[

〈〈knl; κνλ|r1|k′n′l′; κ′ν ′λ′〉〉〈Υlλ
LMSMS

|C1
q (r̂1)|Υl′λ′

L′M ′SMS
〉

+ (−1)L+L′+l+l′+λ+λ′ 〈〈κνλ; knl|r1|κ′ν ′λ′; k′n′l′〉〉〈Υλl
LMSMS

|C1
q (r̂1)|Υλ′l′

L′M ′SMS
〉

+ (−1)l+λ+L+S 〈〈κνλ; knl|r1|k′n′l′; κ′ν ′λ′〉〉〈Υλl
LMSMS

|C1
q (r̂1)|Υl′λ′

L′M ′SMS
〉

+ (−1)l′+λ′+L′+S 〈〈knl; κνλ|r1|κ′ν ′λ′; k′n′l′〉〉 〈Υlλ
LMSMS

|C1
q (r̂1)|Υλ′l′

L′M ′SMS
〉
]

,

(B.26)

where

〈Υlλ
LMSMS

|C1
q (r̂2)|Υl′λ′

L′M ′SMS
〉 = (−1)l+λ+l′+λ′−L−L′〈Υλl

LMSMS
|C1

q (r̂1)|Υλ′l′

L′M ′SMS
〉 (B.27)

has been used. The radial integrals in Eq. (B.26) are

〈〈kanala; kbnblb|r1|kcnclc; kdndld〉〉 = 〈〈kanala|r|kcnclc〉〉〈〈kbnblb|kdndld〉〉 (B.28)
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with

〈〈kanala|r|kcnclc〉〉 =

∫ ∞

0
dr Ska

nala
(r) r Skc

nclc
(r) . (B.29)

The angular integration can be performed analytically. As can be seen, the angular parts have
the form

〈Υlλ
LMSMS

|Cp
q (r̂1)|Υl′λ′

L′M ′SMS
〉 = δλλ′

∑

m,m′,µ

(lmλµ|LM) (l′m′λµ|L′M ′) 〈lm|Cp
q |l′m′〉 . (B.30)

With the help of the known relations between the Clebsch-Gordan coefficients and 3-j symbols
[13, 53]

(j1m1j2m2|jm) = (−1)j1−j2+m
√

2j + 1

(

j1 j2 j
m1 m2 −m

)

, (B.31)

the Wigner-Eckart theorem

〈j1m1|Cp
q |j2m2〉 = (−1)j1−m1

(

j1 p j2

−m1 q m2

)

〈j1‖Cp‖j2〉 , (B.32)

and summation formula taken from Ref. [75]

∑

m,m′,µ

(−1)L′−l−q−µ

(

p l′ l
q m′ −m

) (

λ L l
µ −M m

) (

l′ λ L′

m′ µ −M ′

)

=

(−1)p+l′+L+λ

{

p l′ l
λ L L′

} (

L p L′

−M q M ′

)

, (B.33)

Eq. (B.30) reduces to

〈Υlλ
LMSMS

|Cp
q (r̂1)|Υl′λ′

L′M ′SMS
〉 = δλλ′ (−1)p+l+λ+L+L′+M ·

·
√

(2L + 1)(2L′ + 1) 〈l‖Cp‖l′〉
(

L p L′

−M q M ′

) {

p l′ l
λ L L′

}

.
(B.34)

It follows from Eq. (B.34) that the total matrix element 〈ψknlκνλ
LMSMS

|Dq|ψk′n′l′κ′ν′λ′

L′M ′SMS
〉 is proportional

to

(−1)L−M

(

L 1 L′

−M q M ′

)

, (B.35)

in agreement with the Wigner-Eckart theorem. The reduced matrix element

〈ψknlκνλ
LS ‖D‖ψk′n′l′κ′ν′λ′

L′S 〉 (B.36)

is therefore obtained from Eq. (B.26) if the angular matrix elements are replaced with the
suitable reduced matrix elements,

〈Υlλ
LMSMS

|C1
q (r̂1)|Υl′λ′

L′M ′SMS
〉 −→ 〈Υlλ

LS‖C1(r̂1)‖Υl′λ′

L′S〉 , (B.37)

where
〈Υlλ

LS‖Cp(r̂1)‖Υl′λ′

L′S〉 = δλλ′ (−1)p+l+λ+L′ ·

·
√

(2L + 1)(2L′ + 1) 〈l‖Cp‖l′〉
{

p l′ l
λ L L′

}

.
(B.38)
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The Wigner-Eckart theorem can now be used to calculate the total matrix element:

〈ψknlκνλ
LMSMS

|Dq|ψk′n′l′κ′ν′λ′

L′M ′SMS
〉 = (−1)L−M

(

L 1 L′

−M q M ′

)

〈ψknlκνλ
LS ‖D‖ψk′n′l′κ′ν′λ′

L′S′ 〉 . (B.39)

An important property of the reduced matrix elements follows from Eqs. (B.19), (B.38), and
the properties of the 3-j and 6-j symbols:1

〈ψknlκνλ
LS ‖D‖ψk′n′l′κ′ν′λ′

L′S 〉 = (−1)L′+L〈ψk′n′l′κ′ν′λ′

L′S ‖D‖ψknlκνλ
LS 〉 . (B.40)

B.6 Electric field interaction

The atom-field interaction for the homogeneous electric field F is

∆H = −F · r1 − F · r2 . (B.41)

The electric field may be chosen to point along the z axis, thus the interaction term simplifies
to

∆H = −F D0 (for F ‖ ẑ) . (B.42)

For the latter particular orientation of the electric field vector, selection rules can easily be
derived from the properties of the 3-j and 6-j symbols: a non-vanishing coupling matrix element

〈ψknlκνλ
LMSMS

|∆H|ψk′n′l′κ′ν′λ′

L′M ′SMS
〉 = −F (−1)L−M

(

L 1 L′

−M 0 M ′

)

〈ψknlκνλ
LS ‖D‖ψk′n′l′κ′ν′λ′

L′S′ 〉 , (B.43)

is obtained for

(−1)l+λ = (−1)l′+λ′+1 , (parity change)
|L − L′| ≤ 1 and L + L′ ≥ 1 , (triangular relation with 0 → 0 forbidden)

M = M ′ .

(B.44)

B.7 Dipole transition operator

The dipole transition operator in the length form describing linearly polarised light with polar-
isation vector ê is proportional to

D(ê) = ê · (r1 + r2) = r1

1
∑

q=−1

(−1)qǫ−qC
1
q (r̂1) + r2

1
∑

q=−1

(−1)qǫ−qC
1
q (r̂2)

=
1

∑

q=−1

(−1)qǫ−qDq ,

(B.45)

where ê has been decomposed into spherical tensor components ǫq as

ǫ0 = ez and ǫ±1 = ∓ex ± iey√
2

. (B.46)

The result for matrix elements of D(ê) then follows directly from Eq. (B.39):

〈ψknlκνλ
LMSMS

|D(ê)|ψk′n′l′κ′ν′λ′

L′M ′SMS
〉 =

(−1)L−M 〈ψknlκνλ
LS ‖D‖ψk′n′l′κ′ν′λ′

L′S′ 〉
1

∑

q=−1

(−1)qǫ−q

(

L 1 L′

−M q M ′

)

. (B.47)

1See also Brink and Satchler [75], pg. 61. Note that a different definition of reduced matrix elements is used
in Ref. [75].
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B.8 Reduced dipole matrix element of complex dilatated states

Reduced dipole matrix elements between the eigenstates of the complex scaled free atom Hamil-
tonian H0(Θ) are obtained by means of Eq. (4.32) and from the known reduced matrix elements
of the Sturmian basis states:

〈ΨiΘ‖DΘ‖ΨnΘ〉 = eiΘ
∑

β,γ

xi,β〈ψβ‖D‖ψγ〉xn,γ . (B.48)

The indices β and γ are used to denote the quantum numbers of the Sturmian basis states |ψβ〉
and |ψγ〉, respectively. The fact that Dq(Θ) = eiΘDq has been used. Since matrix elements of
complex dilatated Hermitian operators are symmetric in the basis of real Sturmian functions,
an equality similar to (B.40) also applies for complex scaled states,

〈ΨnΘ‖DΘ‖ΨiΘ〉 = (−1)Ln+Li〈ΨiΘ‖DΘ‖ΨnΘ〉 , (B.49)

as can be shown by using Eq. (B.40) by noting that for non zero expansion coefficients xi,β and
xn,γ Lβ = Li and Lγ = Ln.

B.9 Dipole matrix elements in electric field

To calculate dipole matrix element between complex dilatated eigenstates |ΦnΘ〉 and |ΦgΘ〉 of
the total Hamilton operator H(Θ),

〈ΦnΘ|DΘ(ê)|ΦgΘ〉 , (B.50)

the state vectors are expanded in the basis of the field free eigenstates [cf. Eq. (4.42)],

|ΦgΘ〉 =
∑

i

yg,i|ΨiΘ〉 and |ΦnΘ〉 =
∑

j

yn,j |ΨjΘ〉 . (B.51)

From Eq. (B.51), it follows that

〈ΦnΘ|DΘ(ê)|ΦgΘ〉 =
∑

i,j

yn,jyg,i〈ΨjΘ|DΘ(ê)|ΨiΘ〉

=
∑

q

∑

i,j

yn,jyg,i(−1)qǫ−q〈ΨjΘ|R(Θ)DqR(−Θ)|ΨiΘ〉

≡
∑

q

(−1)qǫ−qy
T

n Dq yg

=
∑

q

∑

i,j

yn,jyg,i(−1)qǫ−q(−1)Lj−Mj

(

Lj 1 Li

−Mj q Mi

)

〈ΨiΘ‖DΘ‖ΨjΘ〉 ,

(B.52)

where the decomposition (B.45) has been used. In Eq. (B.52), Dq denotes the matrix represen-
tation of R(Θ)DqR(−Θ) in the basis of field free complex scaled eigenstates, whereas column
vectors yg and yn are used for the expansion (B.51).

If the electric field is applied along the z axis, field induced mixing of the field free states is
present only among states with equal magnetic quantum numbers. This means that Mg = Mi

and Mn = Mj for all the terms in Eq. (B.51). Therefore, a single term with q = Mn − Mg in
the sum over q is nonzero in Eq. (B.52).
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For the case F ‖ ẑ, a simple expression is obtained for the square of the complex scaled
matrix element [Eq. (4.102)]. Since ǫ∗q = (−1)qǫ−q, it follows that

〈ΦnΘ|DΘ(ê)|ΦgΘ〉2 = 〈ΦgΘ|DΘ(ê)|ΦnΘ〉〈ΦnΘ|DΘ(ê)|ΦgΘ〉

= (−1)Mg−Mnǫ−Mg+Mn (−1)Mn−Mgǫ−Mn+Mg

(

yT

g DMg−Mn yn

) (

yT

n DMn−Mg yg

)

= (−1)Mg−Mn |ǫMg−Mn |2
(

yT

g DMg−Mn yn

)(

yT

n DMn−Mg yg

)

.

(B.53)



Appendix C

Angular integration for the field free

spontaneous emission

The angular integration in the spontaneous photon emission rate equation [Eq. (4.97)],

γn ≈ α3

2π

∑

β

∑

i

∫

d2k̂ (En − Ei)
3〈Ψi|D(êβ)|Ψn〉2 , (C.1)

can be performed as follows. If the direction of the emitted photon is parameterised as (Fig.
C.1),

Figure C.1: Photon emission in the direction k̂: ê1 and ê2 are two mutually orthogonal polari-
sation vectors.

k̂ ≡ êr = x̂ sin θ cos φ + ŷ sin θ sinφ + ẑ cos θ , (C.2)

where θ and φ are the usual spherical polar coordinates, the polarisation vectors êβ, β = 1, 2,
may be chosen as

ê1 ≡ êθ =
∂êr

∂θ

ê2 ≡ êφ =
1

sin θ

∂êr

∂φ
.

(C.3)

The dipole operator D(êβ) can be written as [cf. Eq. (B.45)]

D(êβ) =
1

∑

q=−1

(−1)qǫβ
−qDq , (C.4)

where

ǫ1q(θ, φ) =
∂C1

q (θ, φ)

∂θ
and ǫ2q(θ, φ) =

1

sin θ

∂C1
q (θ, φ)

∂φ
. (C.5)
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Since |ΨiΘ〉 and |ΨnΘ〉 are characterised by the orbital quantum numbers Li and Ln in the
absence of the external field, we can apply the Wigner-Eckart theorem to obtain

〈ΨiΘ|DΘ(êβ)|ΨnΘ〉2

= 〈ΨnΘ|DΘ(êβ)|ΨiΘ〉〈ΨiΘ|DΘ(êβ)|ΨnΘ〉

=

[

∑

q

(−1)qǫβ
−q(−1)Ln−Mn

(

Ln 1 Li

−Mn q Mi

)

][

∑

q′

(−1)q′ǫβ
−q′(−1)Li−Mi

(

Li 1 Ln

−Mi q′ Mn

)

]

· 〈ΨnΘ‖DΘ‖ΨiΘ〉〈ΨiΘ‖DΘ‖ΨnΘ〉 .
(C.6)

The 3-j symbol in the first pair of brackets can be rewritten as [75]
(

Ln 1 Li

−Mn q Mi

)

= (−1)Ln+1+Li

(

Ln 1 Li

Mn −q −Mi

)

=

(

Li 1 Ln

−Mi −q Mn

)

,

(C.7)

and the summation index q replaced by −q. The resulting sums over q and q′ both have only a
single non vanishing term (q = q′ = Mi − Mn), and can be replaced by a single sum

〈ΨiΘ|DΘ(êβ)|ΨnΘ〉2

=

[

∑

q

(−1)−qǫβ
q (−1)Ln−Mn

(

Li 1 Ln

−Mi q Mn

)

(−1)qǫβ
−q(−1)Li−Mi

(

Li 1 Ln

−Mi q Mn

)

]

· 〈ΨnΘ‖DΘ‖ΨiΘ〉〈ΨiΘ‖DΘ‖ΨnΘ〉 .

(C.8)

Since ǫβ
q
∗

= (−1)qǫβ
−q and for the non zero term of the sum q = Mi − Mn, it follows that

〈ΨiΘ|DΘ(êβ)|ΨnΘ〉2

=

[

∑

q

|ǫβ
q |2(−1)Ln+Li

(

Li 1 Ln

−Mi q Mn

) (

Li 1 Ln

−Mi q Mn

)

]

·

· 〈ΨnΘ‖DΘ‖ΨiΘ〉〈ΨiΘ‖DΘ‖ΨnΘ〉 .

(C.9)

The summation over q can now be interchanged with the integration over the possible directions
of the emitted photon and the summation over β. It turns out that

∑

β

∫

d2k̂ |ǫβ
q |2 =

8π

3
for q = 0,±1 . (C.10)

To further simplify the radiation width formula, the sum over the final quantum states is de-
composed as

∑

i

=
∑′

i

∑

Mi

, (C.11)

where the prime denotes the summation over all quantum numbers except Mi. After summing
over all possible magnetic quantum numbers and taking into account that the energy Ei is
independent of Mi for the field free eigenvectors [13], the completeness relation for the 3-j
symbols is used. One finally obtains

γn =
4α3

3(2Ln + 1)

∑′

i,πi 6=πn

∆(Li,1,Ln) 6=0

(En − Ei)
3 Re 〈ΨiΘ‖DΘ‖ΨnΘ〉2 .

(C.12)
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In the derivation of Eq. (C.12), Eq. (B.49) has been used to simplify the product of reduced
matrix elements. Only those final states are considered in Eq. (C.12) for which the triangular
relation

|Li − Ln| ≤ 1 ≤ Li + Ln (C.13)

holds and for which the parities of the initial and final states differ. This has been written
symbolically as ∆(Ln, 1, Li) 6= 0 and πi 6= πn.
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Appendix D

Convolution of calculated spectra

To be comparable to the measured spectra, the calculated photoionisation and inelastic scatter-
ing cross section should be broadened by the instrumental function of the experimental appara-
tus. Very often, the instrumental function is well described by a Gaussian,

gσ(E) =
1√
2πσ

exp

(

− E2

2σ2

)

, (D.1)

with FWHM equal to 2
√

2 ln 2σ ≈ 2.35482 σ. Although only the convolution with a Gaussian
distribution will be considered here, the results of this appendix are general and straightforward
to implement for an arbitrary instrumental function.

To save space, the theoretical spectra are not evenly spaced in energy: the sampling step
is more dense in the regions of narrow resonances. The direct convolution in this case results
in spurious oscillatory behaviour near the energies where the step is changed. Furthermore, for
the convolution in the conjugate space, the FFT algorithm cannot be used since it requires a
constant sampling step. The trivial solution of this problem would be to interpolate the data to
equidistant spacing and to convolve the spectra using FFT. This, however, results in the spectra
with a large number of points, and one is left with the possibility to join several smaller regions
of the spectrum that have previously been convolved separately.

Another approach was used by Filipponi [114] in a different context of deconvolution of mea-
sured absorption spectra. Similar approach is used here to simulate the experimental broadening
of the theoretical spectrum. In the following, the formulae for the convolution of the calculated
theoretical spectra with a Gaussian are derived.

Let β(E) denote a real integrable function. Its Fourier transform is defined by

β̃(q) = F(β) =

∞
∫

−∞

eiqEβ(E)dE . (D.2)

If β(E) is tabulated on a finite interval represented by N points β(Ej), j = 0, . . . , N − 1, the
Fourier transform β̃(q) can be approximated by

β̃(q) ≈
N−2
∑

j=0

Ej+1
∫

Ej

eiqEβ(E)dE ≡
N−2
∑

j=0

Ij . (D.3)

To eliminate the oscillations resulting from the use of non-equidistant energy mesh, the integrand
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β(E) is expanded to the second order,

Ij =

Ej+1
∫

Ej

eiqE

(

βj
0 + βj

1(E − Ej
c ) +

βj
2

2
(E − Ej

c )
2

)

dE

= eiqEj
c

∆j/2
∫

−∆j/2

eiqx

(

βj
0 + βj

1x +
βj

2

2
x2

)

dx ,

(D.4)

where the notation

∆j = Ej+1 − Ej and Ej
c =

Ej+1 + Ej

2
, (D.5)

and
βj

0 = β(Ej
c ) , βj

1 = β′(Ej
c ) , and βj

2 = β′′(Ej
c ) (D.6)

has been introduced. Evaluation of the integral Ij gives

Ij = eiqEj
c ∆j

{

βj
0

sin(q∆j/2)

q∆j/2
+ i

βj
1

q

(

sin(q∆j/2)

q∆j/2
− cos(q∆j/2)

)

+ βj
2

[

∆2
j

8

sin(q∆j/2)

q∆j/2
− 1

q2

(

sin(q∆j/2)

q∆j/2
− cos(q∆j/2)

)

]}

.

(D.7)

The constants βj
0, βj

1, and βj
2 are approximated by means of the finite differences and the Taylor

expansion. The parameter βj
0 is obtained from the expansion around Ej+1 and Ej ,

βj
0 = β(Ej

c )

=
1

2
β(Ej+1 − ∆j/2) +

1

2
β(Ej + ∆j/2)

=
1

2

(

β(Ej+1) −
∆j

2
β′(Ej+1) +

1

2

∆2
j

4
β′′(Ej+1)

+ β(Ej) +
∆j

2
β′(Ej) +

1

2

∆2
j

4
β′′(Ej)

)

+ O(∆3
j ) ,

(D.8)

and the derivatives in Eq. (D.8) are further expressed as

β′(Ej+1) = β′(Ej) + β′′(Ej)∆j + O(∆2
j ) ,

β′′(Ej+1) = β′′(Ej
c ) + O(∆j) , and

β′′(Ej) = β′′(Ej
c ) + O(∆j) .

(D.9)

Inserting (D.9) into (D.8) gives

βj
0 =

β(Ej+1) + β(Ej)

2
−

∆2
j

8
βj

2 + O(∆3
j ) . (D.10)

The first derivative βj
1 is approximated by the difference

βj
1 ≈ β(Ej+1) − β(Ej)

Ej+1 − Ej
, (D.11)
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and the second derivative βj
2 by the average of the differences in the neighbouring points,

βj
2 ≈ 1

2

{

β′(Ej+1
c ) − β′(Ej

c )
∆j+1

2 +
∆j

2

+
β′(Ej

c ) − β′(Ej−1
c )

∆j

2 +
∆j−1

2

}

=
1

Ej+2 − Ej

{

β(Ej+2) − β(Ej+1)

Ej+2 − Ej+1
− β(Ej+1) − β(Ej)

Ej+1 − Ej

}

+
1

Ej+1 − Ej−1

{

β(Ej+1) − β(Ej)

Ej+1 − Ej
− β(Ej) − β(Ej−1)

Ej − Ej−1

}

.

(D.12)

The final result for the approximate Fourier transform follows from Eqs. (D.10)-(D.12), (D.3),
and (D.7):

β̃(q) =
N−3
∑

j=1

eiqEc

{(

β(Ej+1) + β(Ej)

2

)

sin(q∆j/2)

q∆j/2
∆j

+

(

i[β(Ej+1) − β(Ej)]

q
− ∆jβ

j
2

q2

)

(

sin(q∆j/2)

q∆j/2
− cos(q∆j/2)

)

}

.

(D.13)

To convolute the spectrum, β̃(q) should be multiplied by the Fourier transform of the instru-
mental function and transformed back to the energy space. If a Gaussian [Eq. (D.1)] is used,
the transform is equal to

exp

(

−σ2q2

2

)

. (D.14)

Although the q-space mesh from Eq. (D.13) may be chosen arbitrarily, it will be taken equidis-
tant,

qj = j δq , δq = const. (D.15)

This, together with the assumption that β(E) is real [β̃(−q) = β̃(q)∗], gives for the inverse
Fourier transform

β(E) = F
−1(β̃)

=
1

2π

∞
∫

−∞

e−iqE β̃(q)dq

≈ δq

2π

∑

j

e−iqjE β̃(qj)

=
δq

2π



β̃(0) +
∑

j>0

2 Re
[

e−iqjE β̃(qj)
]



 ,

(D.16)

or, if the real and imaginary parts are written explicitly,

β(E) =
δq

2π



β̃(0) +
∑

j>0

2
[

cos qjE Re β̃(qj) + sin qjE Im β̃(qj)
]



 . (D.17)

A comment should be made on the range of q values needed in the calculation. Since the
convolved spectra are broadened, the minimum distance between two peaks that can be resolved
is of the order of σ. Therefore, the maximum q may be determined by

qmax =
2π

2ǫσ
, (D.18)
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where 0 < ǫ ≤ 1 is a free parameter (e.g. ǫ = 1/4). It should be noted that the number of points
in the conjugate space need not be equal to N but may be smaller. Its order of magnitude may
be obtained by

Nq =
maxj{Ej} − minj{Ej}

ǫσ
. (D.19)

This in turn also means that the mesh of the inverse Fourier transform may involve fewer points
than were originally used to represent the calculated spectrum.



Appendix E

Tables of singly and doubly excited

states below the N = 2 threshold

In this appendix, the parameters of singly and doubly excited singlet states of the free helium
atom used in the calculations are tabulated. For each state, its energy E, quantum defect δ, and
radiative width γ are given. Furthermore, for doubly excited states, autoionisation half-widths
Γ/2, and reduced widths Γ∗ = Γ (n − δ)3 are included if Γ & 10−11 a.u. and the results are
consistent with the 1/(n − δ)3 rule. When available, comparison with the existing results from
the literature is made. The errors of the tabulated energies and autoionisation widths range from
10−5 a.u. for lower lying states of angular momenta S, P , D, and F , and decrease to 10−9 a.u.
and less for higher lying states and higher momenta. Where the references provide results with
more than ten significant digits, the reported results are rounded to ten digit accuracy. Although
only the singly excited states for n ≤ 15 are reported, singly excited states with n ≤ 18 are
included in the calculation. Where a conversion value is not given, t0 = 2.418884326505× 10−17

s is used to convert the reference widths to atomic units (cf. Appendix A and Ref. [113] for
recommended values).

E.1 Singly excited states

a Bürgers et al. [81] – Perimetric coordinates are used, and the wavefunctions are expanded
in a Sturmian basis set. Singly excited 1Se and 3Se states with n ≤ 16 are calculated varia-
tionally. The complex dilatation method is used to determine energies and autoionisation
widths of doubly excited 1Se and 3Se states with n ≤ 10 below N = 2, N = 3, and N = 4
ionisation thresholds.

b Theodosiou [115] – A semi empirical method is used to calculate radiative widths of singly
excited states for L ≤ 4 and n ≤ 21: the atomic potential is taken to be the Hartree-Slater
prediction, while experimental energy values are used. Energies of higher lying states
(that at the time the article was written have not yet been measured) are calculated using
asymptotic quantum defects derived from lower states.

c Drake [116], Drake et al. [117] – Singly excited states for 1 ≤ L ≤ 7 are calculated
variationally. A Hylleraas-like explicitly correlated basis is used.

d Žitnik et al. [118] – MCHF wavefunctions of singly excited 1P o states are obtained using
the ATSP codes [52]. Total radiative widths are calculated for the states with n ≤ 8.
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e Lagmago Kamta et al. [82] – A CI method using a Sturmian basis set with several different
pairs of nonlinear scaling parameters (cf. Chapter 4) is used to calculate energies of singly
excited 1Ko, 1N e, and 1Oo states for n ≤ 17, n ≤ 20, and n ≤ 21, respectively. The method
is combined with complex scaling to calculate energies and autoionisation widths of the a
series of 1Se doubly excited states.

Table E.1: Singly excited 1Se states.

present refs. present refs.
−E −E δ γ γ

1 2.903640620 2.903724377a 0.2561
2 2.145968113 2.145974046 0.1492

3 2.061270331 2.061271990 0.1433 4.43(-10) 4.37(-10)b

4 2.033586038 2.033586717 0.1416 2.75(-10) 2.72(-10)
5 2.021176510 2.021176851 0.1409 1.65(-10) 1.63(-10)
6 2.014562903 2.014563097 0.1405 1.04(-10) 1.03(-10)
7 2.010625654 2.010625775 0.1403 6.88(-11) 6.82(-11)
8 2.008093541 2.008093619 0.1401 4.76(-11) 4.71(-11)
9 2.006369497 2.006369551 0.1400 3.42(-11) 3.39(-11)
10 2.005142951 2.005142987 0.1400 2.53(-11) 2.51(-11)
11 2.004239385 2.004239408 0.1399 1.93(-11) 1.91(-11)
12 2.003554601 2.003554611 0.1399 1.50(-11) 1.49(-11)
13 2.003023271 2.003023271 0.1398 1.19(-11) 1.18(-11)
14 2.002602747 2.002602732 0.1398 9.56(-12) 9.46(-12)
15 2.002264229 2.002264191 0.1398 7.81(-12) 7.73(-12)

Table E.2: Singly excited 1P o states.

present refs. present refs.
−E −E δ γ γ

2 2.123838800 2.123843086c -0.0094 4.36(-8) 4.35(-8)d

3 2.055144969 2.055146362 -0.0111 1.40(-8) 1.40(-8)
4 2.031069045 2.031069650 -0.0116 6.10(-9) 6.09(-9)
5 2.019905676 2.019905990 -0.0118 3.17(-9) 3.17(-9)
6 2.013833796 2.013833980 -0.0119 1.85(-9) 1.85(-9)
7 2.010169199 2.010169315 -0.0120 1.17(-9) 1.17(-9)
8 2.007789049 2.007789127 -0.0120 7.89(-10) 7.88(-10)

9 2.006156330 2.006156385 -0.0121 5.56(-10) 5.54(-10)b

10 2.004987944 2.004987984 -0.0121 4.06(-10) 4.04(-10)
11 2.004123162 -0.0121 3.05(-10) 3.04(-10)
12 2.003465230 -0.0121 2.36(-10) 2.35(-10)
13 2.002953076 -0.0121 1.85(-10) 1.85(-10)
14 2.002546610 -0.0121 1.49(-10) 1.48(-10)
15 2.002218635 -0.0121 1.21(-10) 1.21(-10)

Table E.3: Singly excited 1De states.

present refs. present refs.
−E −E δ γ γ

3 2.055620642 2.055620733c 0.0018 1.54(-9) 1.54(-9)b

4 2.031279794 2.031279846 0.0019 6.53(-10) 6.54(-10)
5 2.020015806 2.020015836 0.0020 3.37(-10) 3.38(-10)
6 2.013898209 2.013898227 0.0020 1.96(-10) 1.97(-10)

continued on next page
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Table E.3 – continued

present refs. present refs.
−E −E δ γ γ

7 2.010210016 2.010210028 0.0020 1.25(-10) 1.25(-10)
8 2.007816504 2.007816513 0.0020 8.39(-11) 8.43(-11)
9 2.006175666 2.006175671 0.0021 5.92(-11) 5.94(-11)
10 2.005002067 2.005002072 0.0021 4.33(-11) 4.35(-11)
11 2.004133789 0.0021 3.26(-11) 3.28(-11)
12 2.003473424 0.0021 2.52(-11) 2.53(-11)
13 2.002959527 0.0021 1.99(-11) 1.99(-11)
14 2.002551780 0.0021 1.59(-11) 1.60(-11)
15 2.002222838 0.0021 1.30(-11) 1.30(-11)

Table E.4: Singly excited 1F o states.

present refs. present refs.
−E −E δ γ γ

4 2.031255144 2.031255144c 0.000329 3.35(-10) 3.34(-10)b

5 2.020002936 2.020002937 0.000367 1.73(-10) 1.73(-10)
6 2.013890683 2.013890684 0.000388 1.01(-10) 1.01(-10)
7 2.010205248 2.010205248 0.000400 6.44(-11) 6.44(-11)
8 2.007813297 2.007813297 0.000408 4.35(-11) 4.35(-11)
9 2.006173407 2.006173407 0.000413 3.07(-11) 3.08(-11)
10 2.005000417 2.005000418 0.000417 2.25(-11) 2.25(-11)
11 2.004132544 0.000416 1.70(-11) 1.70(-11)
12 2.003472455 0.000403 1.32(-11) 1.32(-11)
13 2.002958738 0.000347 1.04(-11) 1.04(-11)
14 2.002551092 0.000195 8.32(-12) 8.34(-12)
15 2.002222212 -0.000033 6.73(-12) 6.80(-12)

Table E.5: Singly excited 1Ge states.

present refs. present refs.
−E −E δ γ γ

5 2.020000711 2.020000711c 0.000089 1.03(-10) 1.03(-10)b

6 2.013889345 2.013889345 0.000099 6.00(-11) 6.00(-11)
7 2.010204386 2.010204386 0.000104 3.81(-11) 3.80(-11)
8 2.007812711 2.007812711 0.000108 2.57(-11) 2.56(-11)
9 2.006172992 2.006172992 0.000111 1.82(-11) 1.81(-11)
10 2.005000113 2.005000113 0.000113 1.34(-11) 1.32(-11)
11 2.004132317 0.000114 1.01(-11) 9.97(-12)
12 2.003472288 0.000114 7.81(-12) 7.70(-12)
13 2.002958630 0.000111 6.17(-12) 6.07(-12)
14 2.002551059 0.000107 4.96(-12) 4.87(-12)
15 2.002222267 0.000151 4.04(-12) 3.97(-12)

Table E.6: Singly excited 1Ho states.

present refs.
−E −E δ γ

6 2.013889035 2.013889035c 0.000031 3.98(-11)
7 2.010204183 2.010204183 0.000035 2.52(-11)
8 2.007812572 2.007812572 0.000037 1.70(-11)
9 2.006172892 2.006172892 0.000038 1.20(-11)

continued on next page
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Table E.6 – continued

present refs.
−E −E δ γ

10 2.005000039 2.005000039 0.000039 8.82(-12)
11 2.004132262 0.000040 6.66(-12)
12 2.003472247 0.000042 5.16(-12)
13 2.002958601 0.000047 4.08(-12)
14 2.002551041 0.000056 3.28(-12)
15 2.002222235 0.000045 2.68(-12)

Table E.7: Singly excited 1Ie states.

present refs.
−E −E δ γ

7 2.010204121 2.010204121c 0.000013 1.79(-11)
8 2.007812529 2.007812529 0.000015 1.21(-11)
9 2.006172861 2.006172861 0.000015 8.51(-12)
10 2.005000016 2.005000016 0.000016 6.24(-12)
11 2.004132244 0.000016 4.72(-12)
12 2.003472232 0.000017 3.65(-12)
13 2.002958587 0.000016 2.89(-12)
14 2.002551027 0.000017 2.32(-12)
15 2.002222229 0.000023 1.90(-12)

Table E.8: Singly excited 1Ko states.

present refs.
−E −E δ γ

8 2.007812513 2.007812513c 0.000006 9.01(-12)
9 2.006172849 2.006172849 0.000007 6.35(-12)
10 2.005000007 2.005000007 0.000007 4.65(-12)
11 2.004132237 2.004132237e 0.000008 3.51(-12)
12 2.003472227 2.003472227 0.000008 2.72(-12)
13 2.002958583 2.002958584 0.000008 2.15(-12)
14 2.002551023 2.002551023 0.000007 1.73(-12)
15 2.002222224 2.002222225 0.000007 1.41(-12)

Table E.9: Singly excited 1Le states.

−E δ γ

9 2.006172844 0.000003 4.93(-12)
10 2.005000004 0.000004 3.60(-12)
11 2.004132234 0.000004 2.72(-12)
12 2.003472225 0.000004 2.10(-12)
13 2.002958582 0.000004 1.66(-12)
14 2.002551022 0.000005 1.33(-12)
15 2.002222224 0.000007 1.09(-12)
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Table E.10: Singly excited 1Mo states.

−E δ γ

10 2.005000002 0.000002 2.87(-12)
11 2.004132233 0.000002 2.16(-12)
12 2.003472223 0.000002 1.67(-12)
13 2.002958581 0.000002 1.32(-12)
14 2.002551021 0.000002 1.06(-12)
15 2.002222223 0.000002 8.66(-13)

Table E.11: Singly excited 1Ne states.

present refs.
−E −E δ γ

11 2.004132232 2.004132232e 0.000001 1.77(-12)
12 2.003472223 2.003472223 0.000001 1.36(-12)
13 2.002958580 2.002958580 0.000001 1.07(-12)
14 2.002551021 2.002551021 0.000001 8.62(-13)
15 2.002222223 2.002222222 0.000001 7.03(-13)

E.2 Doubly excited states

a Bürgers, et al. [81] – see pg. 129

b Žitnik et al. [74] – A CI approach is used to express atomic wavefunctions in a basis of
hydrogen-like (Z = 2) two electron LS coupled functions. The ATSP codes [52] are used
to calculate radiative transition matrix elements. Autoionisation rates are calculated from
the zero order states by means of electron-electron repulsion matrix elements. Continuum
wavefunctions of ejected electrons are obtained with the GRASP continuum module [76,
77].

c Lagmago Kamta et al. [82] – see pg. 129

d Lindroth [119] – The method of complex scaling is used with a finite basis set obtained
by placing the helium atom in a spherical volume, inside of which a discrete radial grid is
used. Diagonalisation of a discretised one-particle Hamiltonian gives a discrete complete
basis set which is used to construct correlated wavefunctions. Low lying singlet and triplet
doubly excited states below N = 2 and N = 3 thresholds with L ≤ 3 are calculated.

e Rost et al. [4] – The complex dilatation method is used to obtain parameters of 1P o

resonances converging to the thresholds N = 2 − 7.

f Liu et al. [19] – Radiative and autoionisation widths from doubly excited 1P o states with
n ≤ 7 below the N = 2 ionisation threshold are calculated. In the calculation of radiative
widths, transitions to singly excited 1Se and 1De are included, and the doubly excited
states are treated as bound. Wavefunctions of the singly excited states are calculated
variationally using B spline functions, whereas wavefunctions of the doubly excited states
are calculated with the B spline saddle point complex dilatation method.

g Scrinzi et al. [120] – Energies and autoionisation widths of low lying states with L ≤ 4
and parity (−1)L below the N = 2 and N = 3 thresholds are calculated using the complex
dilatation method. Hylleraas-like explicitly correlated basis is used.
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Table E.12: Doubly excited 1Se states.

present refs. present refs.
−E Γ/2 −E Γ/2 δ Γ∗ γ γ

2a 0.777866028 2.271651(-3) 0.777867636 2.270653(-3)a 0.6586 1.10(-2) 6.51(-8) 1.47(-9)b

2b 0.621876000 1.06872(-4) 0.621927254 1.07818(-4) -0.0255 1.78(-3) 2.01(-7) 1.99(-8)
3a 0.589893480 6.81402(-4) 0.589894682 6.81239(-4) 0.6416 1.79(-2) 7.55(-8) 8.78(-8)
3b 0.548079569 3.7344(-5) 0.548085535 3.7392(-5) -0.2248 2.50(-3) 1.39(-7) 1.10(-7)
4a 0.544881002 2.46015(-4) 0.544881618 2.46030(-4) 0.6623 1.83(-2) 1.06(-7) 1.16(-7)
4b 0.527714192 2.3121(-5) 0.527716640 2.3101(-5) -0.2475 3.54(-3) 1.12(-7) 9.22(-8)
5a 0.526686500 1.09289(-4) 0.526686857 1.09335(-4) 0.6715 1.77(-2) 1.28(-7) 1.39(-7)
5b 0.518102999 1.4924(-5) 0.518104252 1.4894(-5) -0.2554 4.33(-3) 9.59(-8) 7.84(-8)
6a 0.517640889 5.6752(-5) 0.517641112 5.6795(-5) 0.6762 1.71(-2) 1.43(-7) 1.55(-7)
6b 0.512762516 9.996(-6) 0.512763242 9.970(-6) -0.2592 4.90(-3) 8.55(-8) 6.89(-8)
7a 0.512513341 3.2959(-5) 0.512513488 3.2992(-5) 0.6788 1.66(-2) 1.53(-7) 1.65(-7)
7b 0.509483111 6.938(-6) 0.509483569 6.918(-6) -0.2612 5.31(-3) 7.84(-8) 6.22(-8)
8a 0.509332585 2.0770(-5) 0.509332686 2.0795(-5) 0.6805 1.63(-2) 1.60(-7) 1.72(-7)
8b 0.507324033 4.975(-6) 0.507324340 4.959(-6) -0.2625 5.61(-3) 7.34(-8) 5.73(-8)
9a 0.507225762 1.3916(-5) 0.507225835 1.3936(-5) 0.6815 1.60(-2) 1.65(-7) 1.77(-7)
9b 0.505826927 3.670(-6) 0.505827143 3.657(-6) -0.2633 5.83(-3) 6.98(-8) 5.37(-8)
10a 0.505759052 9.777(-6) 0.505759104 9.790(-6) 0.6823 1.58(-2) 1.68(-7) 1.79(-7)
10b 0.504746230 2.776(-6) 0.504746388 2.766(-6) -0.2639 6.00(-3) 6.71(-8) 5.66(-8)
11a 0.504697299 7.131(-6) 0.504697187 7.131(-6)c 0.6828 1.57(-2) 1.71(-7)
11b 0.503940615 2.146(-6) -0.2643 6.13(-3) 6.50(-8)
12a 0.503904132 5.362(-6) 0.503904047 5.360(-6) 0.6832 1.55(-2) 1.73(-7)
12b 0.503324031 1.690(-6) -0.2646 6.24(-3) 6.34(-8)
13a 0.503296078 4.134(-6) 0.503296011 4.131(-6) 0.6835 1.54(-2) 1.74(-7)
13b 0.502841626 1.350(-6) -0.2648 6.30(-3) 6.21(-8)
14a 0.502819726 3.253(-6) 0.502819669 3.239(-6) 0.6838 1.54(-2) 1.75(-7)
14b 0.502457222 1.136(-6) -0.2647 6.59(-3) 6.02(-8)
15a 0.502439676 2.617(-6) 0.502439599 2.689(-6) 0.6841 1.54(-2) 1.77(-7)
15b 0.502145517 8.06(-7) -0.2658 5.73(-3) 6.16(-8)

Table E.13: Doubly excited 1P e states.

present refs. present refs.
−E −E δ γ γ

3a 0.580246463 0.58025d 0.5038 2.53(-7) 2.54(-7)b

4a 0.540041588 0.4663 2.41(-7) 2.42(-7)
5a 0.524178980 0.4526 2.38(-7) 2.38(-7)
6a 0.516208610 0.4459 2.37(-7) 2.36(-7)
7a 0.511626536 0.4422 2.37(-7) 2.36(-7)
8a 0.508748011 0.4399 2.37(-7) 2.35(-7)
9a 0.506821044 0.4383 2.37(-7) 2.33(-7)
10a 0.505467675 0.4372 2.37(-7) 2.32(-7)
11a 0.504480744 0.4364 2.37(-7)
12a 0.503738897 0.4359 2.36(-7)
13a 0.503167185 0.4354 2.36(-7)
14a 0.502717276 0.4351 2.35(-7)
15a 0.502356913 0.4349 2.34(-7)
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Table E.14: Doubly excited 1P o states.

present refs. present refs.
−E Γ/2 −E Γ/2 δ Γ∗ γ γ

2a 0.693106607 6.86350(-4) 0.693134920 6.86625(-4)e 0.3909 5.72(-3) 1.76(-7) 1.68(-7)f

3b 0.597073790 1.922(-6) 0.597073804 1.923(-6) 0.7305 4.49(-5) 1.25(-7) 1.29(-7)
3a 0.564080259 1.50540(-4) 0.564085188 1.50594(-4) 0.2067 6.56(-3) 1.78(-7) 1.75(-7)
3c 0.547089825 0.547092709 5(-9) -0.2585 1.15(-7) 1.02(-7)
4b 0.546491860 1.009(-6) 0.546493257 1.014(-6) 0.7206 7.11(-5) 1.93(-7) 1.78(-7)
4a 0.534361157 6.4152(-5) 0.534363144 6.4173(-5) 0.1854 7.12(-3) 1.83(-7) 1.82(-7)
4c 0.527614605 0.527616338 7(-11) -0.2552 9.87(-8) 9.12(-8)
5b 0.527297038 4.88(-7) 0.527297770 4.91(-7) 0.7202 7.65(-5) 1.99(-7) 1.91(-7)
5a 0.521503669 3.2888(-5) 0.521504666 3.2898(-5) 0.1780 7.37(-3) 1.86(-7) 1.86(-7)
5c 0.518117242 0.518118268 1.7(-11) -0.2534 9.07(-8) 8.56(-8)
6b 0.517936917 2.65(-7) 0.517937328 2.67(-7) 0.7203 7.80(-5) 2.03(-7) 2.01(-7)
6a 0.514733425 1.8992(-5) 0.514733994 1.8998(-5) 0.1745 7.51(-3) 1.88(-7) 1.88(-7)
6c 0.512790392 0.512791034 4.7(-11) -0.2523 8.61(-8) 7.21(-8)
7b 0.512679737 1.59(-7) 0.512679987 1.60(-7) 0.7204 7.86(-5) 2.05(-7) 2.07(-7)
7a 0.510726440 1.1924(-5) 0.510726795 1.1926(-5) 0.1726 7.59(-3) 1.89(-7) 1.89(-7)

7c 0.509508038 0.509508462 4(-11) -0.2517 8.32(-8) 8.90(-8)b

8b 0.509435690 1.02(-7) 0.509435853 1.03(-7) 0.7206 7.88(-5) 2.07(-7) 2.02(-7)
8a 0.508158307 7.963(-6) 0.50815854 7.96(-6) 0.1714 7.64(-3) 1.90(-7) 1.87(-7)
8c 0.507343946 0.507344240 5(-11) -0.2513 8.12(-8) 8.66(-8)
9b 0.507294204 7.0(-8) 0.507294315 6.8(-8) 0.7207 7.89(-5) 2.08(-7) 2.03(-7)
9a 0.506413686 5.576(-6) 0.50641384 5.59(-6) 0.1706 7.68(-3) 1.90(-7) 1.88(-7)
9c 0.505842475 0.50584269 -0.2510 7.98(-8) 8.49(-8)
10b 0.505806870 4.9(-8) 0.50580696 1.0(-7) 0.7207 7.90(-5) 2.09(-7) 2.02(-7)
10a 0.505174494 4.054(-6) 0.505175 4(-6) 0.1701 7.70(-3) 1.91(-7) 1.88(-7)
10c 0.504758391 0.5047590 -0.2507 7.87(-8)
11b 0.504732057 3.6(-8) -0.2792 7.91(-5) 2.10(-7)
11a 0.504262710 3.038(-6) 0.1697 7.72(-3) 1.91(-7)
11c 0.503950219 -0.2506 7.79(-8)
12b 0.503930208 2.8(-8) -0.2792 7.91(-5) 2.10(-7)
12a 0.503572348 2.335(-6) 0.1694 7.73(-3) 1.91(-7)
12c 0.503331706 -0.2504 7.73(-8)
13b 0.503316151 2.1(-8) -0.2791 7.90(-5) 2.11(-7)
13a 0.503037093 1.834(-6) 0.1691 7.75(-3) 1.91(-7)
13c 0.502847834 -0.2504 7.67(-8)
14b 0.502835510 1.5(-8) -0.2791 7.02(-5) 2.10(-7)
14a 0.502613741 1.434(-6) 0.1690 7.59(-3) 1.91(-7)
14c 0.502462325 -0.2499 7.58(-8)
15b 0.502452349 3.9(-8) -0.2789 2.29(-4) 2.10(-7)
15a 0.502273028 1.335(-6) 0.1686 8.71(-3) 1.92(-7)
15c 0.502149666 -0.2510 7.61(-8)

Table E.15: Doubly excited 1De states.

present refs. present refs.
−E Γ/2 −E Γ/2 δ Γ∗ γ γ

2a 0.701907220 1.181476(-3) 0.701946 1.181(-3)d 0.4263 9.21(-3) 2.66(-7) 9.77(-9)b

3a 0.569210651 2.77846(-4) 0.56922 2.78(-4) 0.3122 1.08(-2) 1.71(-7) 1.58(-7)
3b 0.556424541 9.951(-6) 0.55643 1.00(-5) 0.0232 5.25(-4) 9.60(-8) 9.29(-8)
4a 0.536722371 1.15957(-4) 0.3101 1.17(-2) 1.55(-7) 1.52(-7)
4b 0.531509853 5.546(-6) 0.0165 7.01(-4) 1.10(-7) 1.07(-7)
4c 0.529292568 5(-9) -0.1315 6.83(-7) 2.16(-7) 2.16(-7)
5a 0.522740566 5.8144(-5) 0.3110 1.20(-2) 1.49(-7) 1.49(-7)
5b 0.520116280 3.158(-6) 0.0145 7.83(-4) 1.16(-7) 1.13(-7)

continued on next page
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Table E.15 – continued

present refs. present refs.
−E Γ/2 −E Γ/2 δ Γ∗ γ γ

5c 0.519000960 5(-9) -0.1298 1.34(-6) 2.14(-7) 2.15(-7)
6a 0.515453312 3.3014(-5) 0.3118 1.22(-2) 1.47(-7) 1.48(-7)
6b 0.513951996 1.927(-6) 0.0136 8.27(-4) 1.20(-7) 1.16(-7)
6c 0.513311130 4(-9) -0.1288 1.81(-6) 2.13(-7) 2.15(-7)
7a 0.511179769 2.0466(-5) 0.3124 1.22(-2) 1.46(-7) 1.47(-7)
7b 0.510242446 1.251(-6) 0.0131 8.53(-4) 1.22(-7) 1.18(-7)
7c 0.509840160 3(-9) -0.1283 2.14(-6) 2.13(-7) 2.14(-7)
8a 0.508461372 1.3537(-5) 0.3129 1.23(-2) 1.45(-7) 1.46(-7)
8b 0.507837657 8.54(-7) 0.0128 8.70(-4) 1.23(-7) 1.19(-7)
8c 0.507568560 2(-9) -0.1279 2.37(-6) 2.12(-7) 2.14(-7)
9a 0.506625950 9.408(-6) 0.3132 1.23(-2) 1.44(-7) 1.45(-7)
9b 0.506190263 6.08(-7) 0.0127 8.82(-4) 1.24(-7) 1.20(-7)
9c 0.506001395 2(-9) -0.1276 2.54(-6) 2.12(-7) 2.14(-7)
10a 0.505328784 6.799(-6) 0.3134 1.24(-2) 1.44(-7) 1.44(-7)
10b 0.505012580 4.47(-7) 0.0126 8.91(-4) 1.25(-7) 1.21(-7)
10c 0.504874929 1(-9) -0.1275 2.66(-6) 2.12(-7)
11a 0.504378303 5.071(-6) 0.3136 1.24(-2) 1.44(-7)
11b 0.504141617 3.38(-7) 0.0125 8.97(-4) 1.26(-7)
11c 0.504038200 1(-9) -0.1273 2.75(-6) 2.12(-7)
12a 0.503661148 3.882(-6) 0.3137 1.24(-2) 1.44(-7)
12b 0.503479414 2.62(-7) 0.0124 9.02(-4) 1.26(-7)
12c 0.503399748 8(-10) -0.1272 2.83(-6) 2.11(-7)
13a 0.503106766 3.037(-6) 0.3138 1.24(-2) 1.43(-7)
13b 0.502964214 2.07(-7) 0.0124 9.06(-4) 1.26(-7)
13c 0.502901543 7(-10) -0.1272 3.03(-6) 2.11(-7)
14a 0.502669381 2.421(-6) 0.3139 1.24(-2) 1.43(-7)
14b 0.502555511 1.62(-7) 0.0123 8.85(-4) 1.27(-7)
14c 0.502505327 -0.1271 2.11(-7)
15a 0.502318305 1.939(-6) 0.3141 1.23(-2) 1.42(-7)
15b 0.502225953 1.76(-7) 0.0126 1.19(-3) 1.27(-7)
15c 0.502185075 -0.1270 2.11(-7)

Table E.16: Doubly excited 1Do states.

present refs.
−E −E δ γ

3a 0.563800349 0.56380d 0.2005 2.27(-7)
4a 0.534576361 0.1973 2.35(-7)
5a 0.521659004 0.1953 2.38(-7)
6a 0.514833587 0.1942 2.39(-7)
7a 0.510792615 0.1935 2.40(-7)
8a 0.508203761 0.1931 2.40(-7)
9a 0.506446070 0.1928 2.40(-7)
10a 0.505198308 0.1926 2.40(-7)
11a 0.504280701 0.1924 2.40(-7)
12a 0.503586255 0.1923 2.40(-7)
13a 0.503048058 0.1922 2.40(-7)
14a 0.502622519 0.1922 2.40(-7)
15a 0.502280251 0.1921 2.40(-7)



Appendix E – Tables of singly and doubly excited states below the N = 2 threshold 137

Table E.17: Doubly excited 1F e states.

−E δ γ

4a 0.531995404 0.0469 2.42(-7)
5a 0.520385649 0.0475 2.42(-7)
6a 0.514113204 0.0479 2.42(-7)
7a 0.510345728 0.0481 2.42(-7)
8a 0.507907542 0.0482 2.42(-7)
9a 0.506239653 0.0483 2.42(-7)
10a 0.505048736 0.0484 2.42(-7)
11a 0.504168860 0.0484 2.42(-7)
12a 0.503500442 0.0485 2.42(-7)
13a 0.502980779 0.0485 2.42(-7)
14a 0.502568795 0.0485 2.42(-7)
15a 0.502236674 0.0485 2.42(-7)

Table E.18: Doubly excited 1F o states.

present refs.
−E Γ/2 −E Γ/2 δ Γ∗ γ

3a 0.558277197 6.357(-6) 0.55828 6.4(-6)d 0.0709 3.19(-4) 2.20(-7)
4a 0.532254529 3.552(-6) 0.0628 4.34(-4) 2.15(-7)
4b 0.531481304 7(-9) 0.0147 9.03(-7) 4.12(-8)
5a 0.520490708 2.030(-6) 0.0602 4.89(-4) 2.15(-7)
5b 0.520124213 3(-9) 0.0155 8.53(-7) 4.24(-8)
5c 0.519401678 -0.0765 2.26(-7)
6a 0.514166715 1.241(-6) 0.0591 5.20(-4) 2.14(-7)
6b 0.513962516 2(-9) 0.0158 7.05(-7) 4.31(-8)
6c 0.513543372 -0.0761 2.26(-7)
7a 0.510376934 8.06(-7) 0.0585 5.39(-4) 2.14(-7)
7b 0.510251092 9(-10) 0.0161 5.83(-7) 4.35(-8)
7c 0.509986699 -0.0758 2.25(-7)
8a 0.507927432 5.51(-7) 0.0582 5.52(-4) 2.15(-7)
8b 0.507844268 5(-10) 0.0162 4.91(-7) 4.38(-8)
8c 0.507666923 -0.0756 2.25(-7)
9a 0.506253155 3.92(-7) 0.0580 5.60(-4) 2.15(-7)
9b 0.506195282 3(-10) 0.0163 4.25(-7) 4.41(-8)
9c 0.506070605 -0.0755 2.25(-7)
10a 0.505058342 2.88(-7) 0.0578 5.66(-4) 2.15(-7)
10b 0.505016428 2(-10) 0.0164 3.76(-7) 4.42(-8)
10c 0.504925466 -0.0754 2.25(-7)
11a 0.504175949 2.18(-7) 0.0577 5.71(-4) 2.15(-7)
11b 0.504144611 1(-10) 0.0164 3.44(-7) 4.44(-8)
11c 0.504076225 -0.0753 2.25(-7)
12a 0.503505827 1.69(-7) 0.0577 5.74(-4) 2.15(-7)
12b 0.503481779 1(-10) 0.0165 3.53(-7) 4.45(-8)
12c 0.503429075 -0.0753 2.25(-7)
13a 0.502984969 1.33(-7) 0.0576 5.77(-4) 2.15(-7)
13b 0.502966109 8(-11) 0.0165 3.43(-7) 4.46(-8)
13c 0.502924637 -0.0752 2.25(-7)
14a 0.502572121 1.07(-7) 0.0575 5.78(-4) 2.15(-7)
14b 0.502557054 0.0165 4.47(-8)
14c 0.502523838 6(-11) -0.0752 3.19(-7) 2.25(-7)
15a 0.502239372 7.5(-8) 0.0575 4.99(-4) 2.14(-7)
15b 0.502227191 0.0167 4.49(-8)
15c 0.502200122 -0.0751 2.25(-7)
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Table E.19: Doubly excited 1Ge states.

present refs.
−E Γ/2 −E Γ/2 δ Γ∗ γ

4a 0.532356912 5.9(-8) 0.53236 4.82(-6)g 0.0690 7.16(-6) 2.28(-7)
5a 0.520577986 4.8(-8) 0.0707 1.15(-5) 2.25(-7)
5b 0.520033572 6(-11) 0.0042 1.44(-8) 2.74(-8)
6a 0.514226769 3.4(-8) 0.0717 1.42(-5) 2.23(-7)
6b 0.513909579 7(-11) 0.0045 2.81(-8) 2.88(-8)
6c 0.513664386 -0.0491 2.32(-7)
7a 0.510418077 2.4(-8) 0.0723 1.59(-5) 2.22(-7)
7b 0.510217589 6(-11) 0.0046 3.91(-8) 2.98(-8)
7c 0.510062829 -0.0490 2.32(-7)
8a 0.507956356 1.7(-8) 0.0727 1.70(-5) 2.21(-7)
8b 0.507821756 5(-11) 0.0047 4.61(-8) 3.06(-8)
8c 0.507717911 -0.0489 2.32(-7)
9a 0.506274095 1.2(-8) 0.0729 1.78(-5) 2.21(-7)
9b 0.506179440 4(-11) 0.0048 5.24(-8) 3.12(-8)
9c 0.506106418 -0.0488 2.32(-7)
10a 0.505073921 9(-9) 0.0731 1.83(-5) 2.20(-7)
10b 0.505004864 3(-11) 0.0049 5.87(-8) 3.16(-8)
10c 0.504951581 -0.0488 2.32(-7)
11a 0.504187823 7(-9) 0.0733 1.87(-5) 2.20(-7)
11b 0.504135915 2(-11) 0.0049 5.33(-8) 3.19(-8)
11c 0.504095852 -0.0487 2.32(-7)
12a 0.503515070 6(-9) 0.0734 1.91(-5) 2.20(-7)
12b 0.503475076 2(-11) 0.0049 6.33(-8) 3.22(-8)
12c 0.503444199 -0.0487 2.32(-7)
13a 0.502992296 4(-9) 0.0734 1.93(-5) 2.20(-7)
13b 0.502960835 1(-11) 0.0050 4.48(-8) 3.24(-8)
13c 0.502936537 -0.0487 2.32(-7)
14a 0.502578024 4(-9) 0.0735 2.08(-5) 2.19(-7)
14b 0.502552832 0.0050 3.26(-8)
14c 0.502533370 -0.0487 2.32(-7)
15a 0.502244181 0.0736 2.19(-7)
15b 0.502223695 0.0050 3.27(-8)
15c 0.502207870 -0.0487 2.32(-7)

Table E.20: Doubly excited 1Go states.

−E δ γ

5a 0.520159326 0.0198 2.42(-7)
6a 0.513982234 0.0201 2.42(-7)
7a 0.510263288 0.0202 2.43(-7)
8a 0.507852344 0.0203 2.43(-7)
9a 0.506200908 0.0204 2.43(-7)
10a 0.505020505 0.0204 2.43(-7)
11a 0.504147661 0.0205 2.43(-7)
12a 0.503484120 0.0205 2.43(-7)
13a 0.502967946 0.0205 2.43(-7)
14a 0.502558525 0.0205 2.43(-7)
15a 0.502228326 0.0206 2.43(-7)
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Table E.21: Doubly excited 1He states.

−E δ γ

6a 0.513936261 0.0102 2.43(-7)
7a 0.510234193 0.0103 2.43(-7)
8a 0.507832792 0.0104 2.43(-7)
9a 0.506187149 0.0104 2.43(-7)
10a 0.505010461 0.0104 2.43(-7)
11a 0.504140107 0.0105 2.43(-7)
12a 0.503478298 0.0105 2.43(-7)
13a 0.502963364 0.0105 2.43(-7)
14a 0.502554855 0.0105 2.43(-7)
15a 0.502225342 0.0105 2.43(-7)

Table E.22: Doubly excited 1Ho states.

−E Γ/2 δ Γ∗ γ

5a 0.520337950 3(-10) 0.0417 6.95(-8) 2.33(-7)
6a 0.514086145 3(-10) 0.0422 1.32(-7) 2.32(-7)
6b 0.513895815 0.0015 1.79(-8)
7a 0.510328910 3(-10) 0.0424 1.78(-7) 2.31(-7)
7b 0.510208703 0.0016 1.83(-8)
7c 0.510104597 -0.0344 2.35(-7)
8a 0.507896377 2(-10) 0.0426 2.12(-7) 2.31(-7)
8b 0.507815708 0.0016 1.85(-8)
8c 0.507745803 -0.0344 2.35(-7)
9a 0.506231864 2(-10) 0.0427 2.38(-7) 2.30(-7)
9b 0.506175147 0.0017 1.88(-8)
9c 0.506125968 -0.0344 2.35(-7)
10a 0.505043085 1(-10) 0.0428 2.56(-7) 2.30(-7)
10b 0.505001710 0.0017 1.89(-8)
10c 0.504965814 -0.0344 2.35(-7)
11a 0.504164631 1(-10) 0.0429 2.71(-7) 2.30(-7)
11b 0.504133532 0.0017 1.91(-8)
11c 0.504106537 -0.0344 2.35(-7)
12a 0.503497195 8(-11) 0.0429 2.82(-7) 2.30(-7)
12b 0.503473233 0.0017 1.92(-8)
12c 0.503452424 -0.0344 2.35(-7)
13a 0.502978231 7(-11) 0.0430 2.87(-7) 2.30(-7)
13b 0.502959381 0.0018 1.93(-8)
13c 0.502943004 -0.0344 2.35(-7)
14a 0.502566759 6(-11) 0.0430 3.14(-7) 2.30(-7)
14b 0.502551665 0.0018 1.94(-8)
14c 0.502538546 -0.0344 2.35(-7)
15a 0.502235020 0.0430 2.29(-7)
15b 0.502222740 0.0017 1.94(-8)
15c 0.502212077 -0.0344 2.35(-7)

Table E.23: Doubly excited 1Ie states.

−E δ γ

6a 0.514022568 0.0287 2.36(-7)
7a 0.510288600 0.0288 2.35(-7)
7b 0.510205948 0.0006 1.28(-8)
8a 0.507869260 0.0289 2.35(-7)

continued on next page
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Table E.23 – continued

−E δ γ

8b 0.507813817 0.0007 1.29(-8)
8c 0.507763957 -0.0250 2.37(-7)
9a 0.506212768 0.0290 2.35(-7)
9b 0.506173797 0.0007 1.29(-8)
9c 0.506138731 -0.0250 2.37(-7)
10a 0.505029140 0.0290 2.35(-7)
10b 0.505000715 0.0007 1.30(-8)
10c 0.504975126 -0.0250 2.37(-7)
11a 0.504154142 0.0290 2.34(-7)
11b 0.504132778 0.0007 1.30(-8)
11c 0.504113538 -0.0250 2.37(-7)
12a 0.503489108 0.0291 2.34(-7)
12b 0.503472648 0.0007 1.30(-8)
12c 0.503457820 -0.0250 2.37(-7)
13a 0.502971867 0.0291 2.34(-7)
13b 0.502958918 0.0007 1.30(-8)
13c 0.502947249 -0.0250 2.37(-7)
14a 0.502561662 0.0291 2.34(-7)
14b 0.502551294 0.0007 1.31(-8)
14c 0.502541947 -0.0250 2.37(-7)
15a 0.502230876 0.0291 2.34(-7)
15b 0.502222443 0.0007 1.31(-8)
15c 0.502214844 -0.0250 2.37(-7)

Table E.24: Doubly excited 1Io states.

−E δ γ

7a 0.510221502 0.0060 2.43(-7)
8a 0.507824249 0.0060 2.43(-7)
9a 0.506181129 0.0060 2.43(-7)
10a 0.505006063 0.0061 2.43(-7)
11a 0.504136797 0.0061 2.43(-7)
12a 0.503475745 0.0061 2.43(-7)
13a 0.502961355 0.0061 2.43(-7)
14a 0.502553244 0.0061 2.43(-7)
15a 0.502224032 0.0061 2.43(-7)

Table E.25: Doubly excited 1Ke states.

−E δ γ

8a 0.507819925 0.0038 2.43(-7)
9a 0.506178079 0.0038 2.43(-7)
10a 0.505003833 0.0038 2.43(-7)
11a 0.504135118 0.0038 2.43(-7)
12a 0.503474450 0.0038 2.43(-7)
13a 0.502960335 0.0039 2.43(-7)
14a 0.502552427 0.0039 2.43(-7)
15a 0.502223367 0.0039 2.43(-7)
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Table E.26: Doubly excited 1Ko states.

−E δ γ

7a 0.510265932 0.0211 2.38(-7)
8a 0.507854020 0.0212 2.37(-7)
8b 0.507813106 0.0003 9.60(-9)
9a 0.506202040 0.0212 2.37(-7)
9b 0.506173286 0.0003 9.61(-9)
9c 0.506146935 -0.0189 2.38(-7)
10a 0.505021307 0.0212 2.37(-7)
10b 0.505000336 0.0003 9.60(-9)
10c 0.504981110 -0.0189 2.38(-7)
11a 0.504148250 0.0213 2.37(-7)
11b 0.504132490 0.0003 9.58(-9)
11c 0.504118036 -0.0189 2.38(-7)
12a 0.503484567 0.0213 2.37(-7)
12b 0.503472425 0.0004 9.56(-9)
12c 0.503461286 -0.0189 2.39(-7)
13a 0.502968293 0.0213 2.37(-7)
13b 0.502958741 0.0004 9.54(-9)
13c 0.502949977 -0.0189 2.39(-7)
14a 0.502558799 0.0213 2.37(-7)
14b 0.502551151 0.0004 9.52(-9)
14c 0.502544131 -0.0189 2.39(-7)
15a 0.502228548 0.0213 2.37(-7)
15b 0.502222329 0.0004 9.49(-9)
15c 0.502216621 -0.0189 2.39(-7)

Table E.27: Doubly excited 1Le states.

−E δ γ

8a 0.507844363 0.0163 2.39(-7)
9a 0.506195244 0.0163 2.39(-7)
9b 0.506173066 0.0002 7.48(-9)
10a 0.505016346 0.0163 2.38(-7)
10b 0.505000172 0.0002 7.48(-9)
10c 0.504985175 -0.0149 2.39(-7)
11a 0.504144520 0.0163 2.38(-7)
11b 0.504132365 0.0002 7.45(-9)
11c 0.504121092 -0.0149 2.39(-7)
12a 0.503481691 0.0163 2.38(-7)
12b 0.503472328 0.0002 7.41(-9)
12c 0.503463640 -0.0149 2.39(-7)
13a 0.502966030 0.0163 2.38(-7)
13b 0.502958664 0.0002 7.36(-9)
13c 0.502951829 -0.0149 2.39(-7)
14a 0.502556987 0.0163 2.38(-7)
14b 0.502551089 0.0002 7.31(-9)
14c 0.502545615 -0.0149 2.39(-7)
15a 0.502227074 0.0163 2.38(-7)
15b 0.502222279 0.0002 7.26(-9)
15c 0.502217827 -0.0149 2.39(-7)
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Table E.28: Doubly excited 1Lo states.

−E δ γ

9a 0.506176367 0.0026 2.43(-7)
10a 0.505002581 0.0026 2.43(-7)
11a 0.504134176 0.0026 2.43(-7)
12a 0.503473723 0.0026 2.43(-7)
13a 0.502959762 0.0026 2.43(-7)
14a 0.502551968 0.0026 2.43(-7)
15a 0.502222993 0.0026 2.43(-7)

Table E.29: Doubly excited 1Me states.

−E δ γ

10a 0.505001823 0.0018 2.43(-7)
11a 0.504133605 0.0018 2.43(-7)
12a 0.503473282 0.0018 2.43(-7)
13a 0.502959415 0.0018 2.43(-7)
14a 0.502551690 0.0018 2.43(-7)
15a 0.502222767 0.0018 2.43(-7)

Table E.30: Doubly excited 1Mo states.

−E δ γ

9a 0.506190617 0.0129 2.39(-7)
10a 0.505012969 0.0129 2.39(-7)
10b 0.505000094 0.0001 6.00(-9)
11a 0.504141980 0.0130 2.39(-7)
11b 0.504132305 0.0001 5.98(-9)
11c 0.504123259 -0.0120 2.40(-7)
12a 0.503479734 0.0130 2.39(-7)
12b 0.503472281 0.0001 5.95(-9)
12c 0.503465311 -0.0120 2.40(-7)
13a 0.502964490 0.0130 2.39(-7)
13b 0.502958627 0.0001 5.90(-9)
13c 0.502953143 -0.0120 2.40(-7)
14a 0.502555753 0.0130 2.39(-7)
14b 0.502551059 0.0001 5.84(-9)
14c 0.502546667 -0.0120 2.40(-7)
15a 0.502226071 0.0130 2.39(-7)
15b 0.502222254 0.0001 5.76(-9)
15c 0.502218683 -0.0120 2.40(-7)

Table E.31: Doubly excited 1Ne states.

−E δ γ

10a 0.505010553 0.0105 2.40(-7)
11a 0.504140163 0.0105 2.40(-7)
11b 0.504132274 0.0001 2.62(-9)
12a 0.503478334 0.0105 2.40(-7)
12b 0.503472256 0.0001 2.67(-9)
12c 0.503466538 -0.0098 7.09(-12)
13a 0.502963388 0.0106 2.40(-7)
13b 0.502958608 0.0001 2.71(-9)

continued on next page
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Table E.31 – continued

−E δ γ

13c 0.502954109 -0.0098 6.57(-12)
14a 0.502554871 0.0106 2.40(-7)
14b 0.502551043 0.0001 2.74(-9)
14c 0.502547440 -0.0098 6.16(-12)
15a 0.502225353 0.0106 2.40(-7)
15b 0.502222241 0.0001 2.77(-9)
15c 0.502219311 -0.0098 5.83(-12)

Table E.32: Doubly excited 1No states.

−E δ γ

11a 0.504133238 0.0013 2.43(-7)
12a 0.503472999 0.0013 2.43(-7)
13a 0.502959192 0.0013 2.43(-7)
14a 0.502551511 0.0013 2.43(-7)
15a 0.502222622 0.0013 2.43(-7)
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Appendix F

Razširjeni povzetek v slovenščini

F.1 Uvod

Atom helija je najenostavneǰsi tridelčni sistem v atomski fiziki, ki je eksperimentalno in računsko
obvladljiv, obenem pa dovolj zapleten, da omogoča študij pojavov, katerih opis presega stan-
dardne približke s povprečnim poljem [1]. Odstopanje od tovrstnega opisa je najizraziteǰse
v primeru dvojno vzbujenih stanj. Že prve meritve fotoabsorpcije (sl. F.1) pri vzbujanju s
sinhrotronsko svetlobo [2] so jasno pokazale, da je potrebno pri modeliranju spektrov že v naj-
nižjem približku uporabiti korelirana dvoelektronska stanja [3].

Slika F.1: Absorpcijski spekter na območju dvojno vzbujenih stanj helijevega atoma, ki sta ga
posnela Madden in Codling na fotografsko ploščo leta 1963 [2].

Dvojno vzbujena stanja helijevega atoma ležijo nad prvim pragom za ionizacijo (N = 1)
pri 24.587 eV in pod pragom za dvojno ionizacijo (N → ∞), ki je 79.003 eV nad osnovnim
stanjem atoma (sl. 1.1). V nadaljevanju nas bodo zanimala dvojno vzbujena stanja, ki ležijo
pod drugim pragom za ionizacijo (N = 2). Tista s parnostjo (−1)L, kjer je L skupna tirna
vrtilna količina, lahko razpadejo z emisijo elektrona. Takšna stanja imenujemo resonance, raz-
padni proces pa avtoionizacijo. Valovno funkcijo resonančnega stanja opǐsemo s superpozicijo
lokaliziranih (vezanih) in kontinuumskih komponent (gl. npr. [95, 96]).

Od resonanc s simetrijo 1P o - takšna atomska stanja so namreč dosegljiva iz osnovnega stanja
atoma pri vzbujanju s fotoni - razpadajo z avtoionizacijo razmeroma hitro stanja, ki pripadajo
Rydbergovi seriji z oznako a, stanja t.i. serij b in c pa razpadajo z manǰso verjetnostjo [4, 37].
Črte v absorpcijskih in fotoionizacijskih spektrih, ki pripadajo stanjem c, so zato ostre. Ker je
tudi njihova oscilatorska moč iz osnovnega stanja majhna, ni prav nič presenetljivo, da so obstoj
serije c v fotoionizacijskih spektrih eksperimentalno potrdili šele leta 1992 [5].
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Praktično do konca devetdesetih let je avtoionizacija veljala za dominantni razpadni kanal
dvojno vzbujenih stanj z vrtilno količino L = 1. Leta 1999 pa so pri razpadu zaznali tudi UV
svetlobo in atome helija v metastabilnem stanju [8, 10]. Pokazali so, da je za nekatere vrste
resonanc najverjetneǰsi fluorescenčni razpad. Povsem razumljivo je, da fluorescenčni razpad
prevladuje za visoko vzbujena Rydbergova stanja, pri katerih se elektrona v povprečju gibljeta
daleč narazen in je zato verjetnost za avtoionizacijo majhna. V primeru omenjene serije c pa je
fluorescenčni razpad dominanten že za najnižje stanje z n = 3.

Pod pragom N = 2 lahko v fluorescenčnih spektrih dosežemo bolǰso ločljivost kot v fotoioni-
zacijskih spektrih, kjer imajo spektralne črte značilno široko asimetrično obliko zaradi interakcije
s kontinuumskim kanalom. Identifikacija vrhov, katerih energije se le malo razlikujejo, je zato
v fluorescenčnih spektrih lažja. Pod drugim pragom za ionizacijo je bilo tako mogoče opaziti
več novih podrobnosti, recimo signal tripletnih serij dvojno vzbujenih stanj, v katera se preseli
oscilatorska moč singletnih stanj zaradi sklopitve spin-tir [18].

Poleg stanj s simetrijo 1P o so za preučevanje koreliranega gibanja v atomu pomembna tudi
druga, t.i. temna stanja, ki niso neposredno dostopna z vzbuditvijo atoma v osnovnem stanju.
Stroga izbirna pravila, ki veljajo za dipolno vzbuditev s fotoni, je mogoče zaobiti, če izpostavimo
atom zunanjemu električnemu polju (Starkov efekt). To med seboj sklaplja stanja z različnimi
vrtilnimi količinami obeh parnosti; temna stanja tako postanejo dostopna zaradi sklopitve z
optično dovoljenimi stanji 1P o.

Kvantnomehanska stanja prostega atoma so lahko vezana ali kontinuumska. Ob vklopu
električnega polja se atomski potencial spremeni (sl. 2.1): ionizacijski prag se pomakne k nižjim
energijam, debelina potencialne bariere pa postane končna (za z > 0 v primeru F ‖ ẑ). Stanja
pod premaknjenim ionizacijskim pragom, ki so bila prej vezana, se zato spremenijo v resonance.
Predstavljamo si lahko, da elektron tunelira skozi nastalo bariero. Verjetnost za ta proces
je majhna, če je stanje močno vezano in energijsko ločeno od ostalih stanj, kot velja npr. za
osnovno stanje helijevega atoma. Osnovno stanje zato upravičeno obravnavamo kot vezano tudi
v prisotnosti električnega polja.

Študij Starkovega efekta dvojno vzbujenih stanj helijevega atoma se šele pričenja. Vpliv
močnega homogenega statičnega električnega polja jakosti do 84.4 kV/cm v fotoionizacijskih
spektrih so do zdaj izmerili Harries in sodelavci [44]. Potrdili so teoretične napovedi Chunga
in Fanga [42], da so pod pragom N = 2 za merljive učinke električnega polja za resonance z
n = 6 − 7 potrebne poljske jakosti velikosti 50 kV/cm.

Vpliv električnega polja na fluorescenčni pridelek in pridelek metastabilnih atomov pa je
nedavno preučevalo več eksperimentalnih skupin (Penent, Rubensson, Prince in Harries, vsi s
sodelavci). Opazovali so učinke zunanjega polja na primarno in sekundarno fluorescenco dvojno
vzbujenih stanj pod drugim ionizacijskim pragom v časovni in energijski domeni. Meritve so
pokazale, da lahko že električne poljske jakosti velikosti nekaj kV/cm močno spremenijo obliko
fluorescenčnih spektrov in zaznavno vplivajo na življenjske čase resonanc.

Vseh teh rezultatov ni mogoče razumeti brez podrobnega modeliranja prehodov med enojno
in dvojno vzbujenimi stanji helija v električnem polju. Za analizo izmerjenih fotoionizacij-
skih in fluorescenčnih spektrov je nujna podrobneǰsa teoretična obravnava Starkovega efekta,
kar je cilj pričujoče disertacije. V nadaljevanju opisujemo metodo in računske rezultate, s ka-
terimi je mogoča resna analiza omenjenih eksperimentov. Predstavljamo torej prve celovite
izračune ionskega pridelka na območju dvojno vzbujenih stanj helija v močnem električnemu
polju. Napovedi smo izdelali za dve vrsti geometrije: vpadna svetloba je lahko polarizirana
pravokotno ali vzporedno glede na vektor zunanjega električnega polja. Izračunali smo tudi
totalni sipalni presek za neelastično sipanje fotonov na atomu helija v električnem polju za obe
orientaciji vpadne svetlobe.
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F.2 Formulacija problema

Helijev atom v homogenem statičnem električnem polju opǐsemo s Hamiltonovim operatorjem

H = H0 + ∆H , (F.1)

kjer smo s H0 označili operator prostega atoma

H0 =
p2

1

2
+

p2
2

2
− Z

r1
− Z

r2
+

1

|r1 − r2|
, (F.2)

z ∆H pa sklopitev z zunanjim električnim poljem:

∆H = −F · (r1 + r2) . (F.3)

Uporabili smo atomske enote (gl. Dodatek A). V zgornjih enačbah sta p1 in p2 operatorja
gibalnih količin obeh elektronov, z operatorjema r1 in r2 opǐsemo vektorja koordinat, F pa je
vektor električnega polja. Naboj točkastega jedra, ki smo mu pripisali neskončno maso, smo
označili z Z. Smer osi z si izberemo vzdolž električnega polja (F ‖ ẑ). Izbira koordinatnega
sistema seveda ne vpliva na rezultate izračunov.

Izračunati želimo fotoionizacijski presek helijevega atoma v osnovnem stanju in presek za
neelastično sipanje fotonov na atomu helija za vpadno svetlobo z energijo na področju dvojno
vzbujenih stanj pod pragom N = 2 (približno 65.40 eV).

Problem helijevega atoma v električnem polju obravnavamo na dva načina: perturbativno,
v prvem redu časovno neodvisne teorije motenj, in eksaktno, z metodo kompleksne rotacije.
V obeh primerih izrazimo rešitve problema lastnih vrednosti v električnem polju z rešitvami
prostega atoma. Pri tem obravnavamo sklopitev s fotonskim poljem v najnižjem (t.j. prvem oz.
drugem) redu. V nadaljevanju se bomo na kratko posvetili neperturbativni obravnavi. Za opis
atoma v električnem polju uporabimo pristop mešanja konfiguracij (configuration interaction).
Stanja v električnem polju pri tem predstavimo v bazi realnih senčenih Sturm-Coulombovih
funkcij [78, 82] (gl. Dodatek B).

F.3 Obravnava problema

Metoda kompleksne rotacije je že dodobra uveljavljena na področju atomske, molekularne in
jedrske fizike. Z njeno pomočjo lahko predstavimo valovne funkcije kontinuumskih in nevezanih
stanj v bazi kvadratno integrabilnih funkcij L2 [83–87]. To pomeni, da lahko s takšno bazo v
celoti opǐsemo interakcije tipa vezano stanje-kontinuum in kontinuum-kontinuum, kljub temu, da
stanja obravnavamo na enak način, kot navadno obravnavamo vezana stanja. Kompleksno roti-
rani Hamiltonov operator H(Θ) dobimo, če nadomestimo koordinate in momente v operatorju
H po predpisu

rk → rk eiΘ in pk → pk e−iΘ , k = 1, 2 . (F.4)

Pri tem je Θ realen parameter, ki mu pravimo rotacijski kot. V praksi je prehod v kom-
pleksni prostor enostaven: kinetični (T ), potencialni (V ) in interakcijski (∆H) del celotnega
Hamiltonovega operatorja se pomnožijo s faznimi faktorji: T → T e−2iΘ, V → V e−iΘ, ∆H →
∆H eiΘ.

Metoda kompleksne rotacije temelji na analitičnem nadaljevanju Greenovega operatorja
G(E) = (E − H)−1 v kompleksni ravnini. Vsakemu vezanemu stanju operatorja H pripada
pol Greenovega operatorja, kontinuumskemu stanju pa poltrak (z začetkom pri enem od ioniza-
cijskih pragov), kjer Greenov operator ni definiran. Resonancam, ki zadoščajo robnim pogojem
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izhajajočih valov, pripadajo poli v spodnji polovici kompleksne ravnine. Pokazati se da, da je
mogoče Greenov operator izraziti z operatorjema H(Θ) in H(−Θ) in se na ta način izogniti
singularnostim na realni osi [87].

Operator H(Θ) ni več hermitski, njegov spekter je kompleksen. Zanj veljajo naslednje last-
nosti (gl. sl. 4.1 in 4.2).

1. Kontinuumski poltraki se zavrtijo za kot −2Θ okrog ionizacijskih pragov. V primeru, ko
je nabor baznih funkcij iz prostora L2, je kontinuum predstavljen z izoliranimi točkami, ki
ležijo približno na premici.

2. Spekter vezanih stanj ostane nespremenjen (realen), valovne funkcije pa kvadratno inte-
grabilne.

3. Če je parameter Θ dovolj velik, da zasuk kontinuumov odkrije resonance, so njihove lastne
vrednosti neodvisne od Θ. Lastne vrednosti EΘ imajo obliko E−iΓ/2, kjer je E resonančna
energija, Γ pa energijska širina za avtoionizacijo.

Z Greenovim operatorjem in lastnimi stanji Hamiltonovega operatorja H(Θ) lahko enostavno
izrazimo fotoionizacijski presek, če obravnavamo osnovno stanje kot vezano (gl. npr. [87, 110]):

σ(ω0) = 4παω0 Im
∑

n

〈ΦnΘ|D(ê0) eiΘ|ΦgΘ〉2
EnΘ − Eg − ω0

. (F.5)

V enačbi (F.5) je ω0 energija linearno polariziranih vpadnih fotonov s polarizacijo ê0, α je
konstanta fine strukture, |ΦgΘ〉 in |ΦnΘ〉 sta lastni stanji operatorja H(Θ), ki opisujeta osnovno
stanje atoma v zunanjem električnem polju oz. končna stanja, ki so dosegljiva z absorpcijo
fotona. Z EnΘ smo označili lastno vrednost, ki pripada |ΦnΘ〉, Eg pa predstavlja realni del lastne
vrednosti EgΘ. Z D(ê0) smo označili dipolni operator,

D(ê0) = ê0 · (r1 + r2) . (F.6)

Matrični element iz enačbe (F.5) izračunamo tako, da pod integralom po elektronskih koor-
dinatah dekonjugiramo radialni del valovne funkcije 〈r1, r2|ΦnΘ〉, medtem ko ostane kotni del
nespremenjen [83, 86–88]. Ta nenavadni predpis je posledica dejstva, da operator H(Θ) ni
hermitski: v bazi realnih funkcij zapǐsemo H(Θ) s kompleksno simetrično matriko.

V izrazu za fotoionizacijski presek (F.5) nismo upoštevali, da lahko končno stanje razpade
radiativno, zaradi česar ne pride nujno do emisije elektrona. Tovrstni razpadi lahko zaznavno
spremenijo obliko fotoionizacijskih spektrov, zlasti pri stanjih z majhno avtoionizacijsko širino:
prispevek resonančnega stanja k celotnemu preseku za fotoionizacijo se zmanǰsa zaradi fluo-
rescenčnega razpada. Razpad resonančnega stanja lahko upoštevamo z optičnim potencialom,
s katerim vpeljemo v gibalne enačbe dušenje zaradi radiativnega razpada [97]. Če označimo
verjetnost za fluorescenčni razpad resonance |ΦnΘ〉 z γn, se njen popravljeni prispevek k fotoion-
izacijskemu preseku glasi

σn(ω0) ≡ 4παω0 Im
〈ΦnΘ|D(ê0) eiΘ|ΦgΘ〉2 + Rn

En − i(γn + Γn)/2 − Eg − ω0
,

Rn = − γn

γn + Γn

∣

∣〈ΦnΘ|D(ê0) eiΘ|ΦgΘ〉
∣

∣

2
.

(F.7)

Pri tem smo z Γn označili avtoionizacijsko širino stanja. Za izračun γn uporabimo izraz

γn ≈ α3

2π

∑

β

∑

i

(En − Ei)
3

∫

d2k̂ Re 〈ΦiΘ|D(êβ) eiΘ|ΦnΘ〉2 . (F.8)
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V enačbi (F.8) smo upoštevali le prehode v končna enojno vzbujena stanja |ΦiΘ〉, ki jih obrav-
navamo kot vezana tudi v prisotnosti polja. Uporabili smo realni del kvardata sicer kompleksnega
matričnega elementa, s čimer zanemarimo sklopitev s kontinuumom pri začetnem stanju |ΦnΘ〉
[4, 88, 95]. Energiji En in Ei sta realna dela lastnih vrednosti EnΘ in EiΘ. Integracija v enačbi
(F.8) poteka po smereh valovnega vektorja izsevane svetlobe k, z êβ , β = 1, 2, pa smo označili
linearno neodvisni polarizaciji izsevanih fotonov. Integral v (F.8) zlahka izvrednotimo z izbrano
parametrizacijo za vektorje k̂ in êβ (gl. npr. Dodatek C).

Podobno lahko zapǐsemo presek za neelastično sipanje fotonov na atomu helija v osnovnem
stanju s pomočjo Kramers-Heisenbergove formule [90–92]. Rezultat je

σ(ω0) = α4ω0

∑

β

∑

m

(Eg + ω0 − Em)3
∫

d2k̂ |Mmg|2 , (F.9)

kjer je matrični element enak

Mmg =
∑

n

〈ΦmΘ|D(êβ)eiΘ|ΦnΘ〉〈ΦnΘ|D(ê0)e
iΘ|ΦgΘ〉

Eg + ω0 − EnΘ
. (F.10)

Privzeli smo, da je osnovno stanje vezano, poleg tega pa kot vezana obravnavamo tudi končna
stanja |ΦmΘ〉, zato postavimo Em = Re EmΘ. Vsota po m zajema le enojno vzbujena stanja v
električnem polju, vsota po n pa vsa stanja, ki so dostopna z absorpcijo fotona iz osnovnega
stanja. V enačbi (F.10) smo zanemarili prispevke elastičnega sipanja fotonov (gl. sl. 4.3c), ker
je njihov prispevek na energijskem območju dvojno vzbujenih stanj pod drugim ionizacijskim
pragom relativno majhen (gl. npr. [90]). Učinke fluorescenčnega razpada resonančnih stanj
|ΦnΘ〉 tokrat upoštevamo tako, da v enačbi (F.10) nadomestimo EnΘ = En − iΓn/2 z izrazom
En − i(γn + Γn)/2.

F.4 Rezultati

F.4.1 Starkovi diagrami

Omenili smo že, da izrazimo rešitve helijevega atoma v električnem polju z rešitvami prostega
atoma. V račune, ki ji predstavljamo v tem razdelku, smo vključili stanja z vrtilnimi količinami
L ≤ 10 sode in lihe parnosti. Koordinatni sistem smo zavrteli tako, da kaže zunanje električno
polje v smeri osi z.

Vpliv električnega polja na energijske nivoje nazorno prikažemo s Starkovimi diagrami.
Celotna tirna vrtilna količina L in parnost π v električnem polju nista več dobri kvantni števili,
za F ‖ ẑ pa se ohranja projekcija M celotne vrtilne količine na os z. V Starkovih diagramih zato
prikažemo simetrijo 1Lπ vodilne komponente v razvoju po stanjih prostega atoma za različne
vrednosti M . Na slikah 6.1 in 6.2 sta prikazana Starkova diagrama za vzporedno (F ‖ P ) in
pravokotno (F ⊥ P ) polarizacijo vpadne svetlobe glede na vektor električnega polja za energij-
sko območje resonanc s kvantnimi števili n = 7− 9. Energijska skala je premaknjena za 2.29715
meV, za kolikor je napačno izračunana energija osnovnega stanja (gl. Dodatek E). Ta premik
bomo odslej upoštevali povsod, kjer je prikazana Starkova shema energijskih nivojev. Diagram
za F ‖ P prikazuje samo stanja s parnostjo (−1)L: pri izbrani smeri električnega polja in M = 0
je sklopitev zaradi električnega polja med stanji s parnostjo (−1)L in stanji s parnostjo (−1)L′+1

enaka nič za poljubni vrednosti L in L′. V nadaljevanju bomo pokazali, da se optično dovo-
ljena stanja a, b in c 1P o zaznavno mešajo le z nekaterimi stanji iz množice stanj z različnimi
simetrijami 1Lπ, ki so jim energijsko blizu.
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F.4.2 Fotoionizacija

Na sliki 6.4 je prikazana primerjava med spektri, ki so jih izmerili Harries in sodelavci [44],
in izračunanimi fotoionizacijskimi spektri za električne poljske jakosti med 9.17 kV/cm in 84.4
kV/cm, pri vzporedni polarizaciji vpadne svetlobe glede na smer električnega polja. Vsi izračuna-
ni spektri so raztegnjeni v navpični smeri z istim konstantnim faktorjem, tako da se cela skupina
najbolje ujema z meritvami. Spektri so dodatno razmaknjeni vzdolž ordinate zaradi preglednosti.
Zaradi primerjave je izračunani fotoionizacijski presek razmazan z Gaussovo funkcijo širine 1.4
meV FWHM, ki opisuje eksperimentalno prenosno funkcijo.

Izmerjeni in izračunani preseki se ujemajo razmeroma dobro. Pri nizkih električnih poljih so
prisotna večja nihanja izmerjenega signala. Iz izračunani spektrov bi pričakovali, da tam šum
meritev preglasi učinek zunanjega polja. Za poljske jakosti nad 30 kV/cm pa so vrhovi blizu
resonance 6a 1P o že jasno vidni. To potrjuje teoretične napovedi Chunga in Fanga [42], ki jih je
dala metoda SP-CR (Saddle Point Complex Rotation).

Širše območje (n = 6, 7) prikazuje slika 6.5 za električni poljski jakosti 50.5 kV/cm in 84.4
kV/cm. Teorija in eksperiment se v obeh primerih zelo dobro ujemata: račun lahko pojasni vse
prikazane podrobnosti pri vǐsji jakosti polja. Zato bi pri nižji jakosti pričakovali kvečjemu bolǰse
ujemanje, vendar se to ne zgodi. Trenutno še ni jasno, kateri atomski efekti bi lahko pojasnili
oscilacije, ki se kažejo pri nižjih poljih.

Na slikah 6.5 in 6.6 so prikazani tudi spektri za pravokotno polarizacijo (F ⊥ P ), ki pa
še niso bili izmerjeni. Poleg modulacije amplitud posameznih vrhov zaradi spremembe jakosti
električnega polja, opazimo v teh spektrih tudi vrhove, ki jih pri vzporedni geometriji (F ‖ P )
ni. Sklepamo, da gre za prispevke stanj s parnostjo (−1)L+1.

Natančneǰso obravnavo fotoionizacijskih spektrov omogoča analiza Starkovih diagramov. Na
slikah 6.10 in 6.11 so prikazani izračunani spektri za vzporedno in pravokotno polarizacijo glede
na smer električnega polja. Vsak izmed spektrov je navpično premaknjen tako, da njegov premik
ustreza električni poljski jakosti, pri kateri je bil izračunan. Barve, s katerimi so predstavljeni
nivoji Starkovega diagrama ustrezajo klasifikaciji stanj, ki sta jo uporabila Tong in Lin pri opisu
prednostnega pravila (propensity rule) [45]. Pri tem je treba opozoriti, da oznake stanj a, b in c,
ki sta jih uporabila avtorja, niso enake oznakam, ki jih je uvedel Lipsky za stanja pod pragom
N = 2 [37]. Tong in Lin sta v isto skupino uvrstila stanja, ki imajo podoben korelacijski vzorec.
Zaradi preglednosti smo njune oznake preimenovali v a∗, b∗ in c∗. Povezavo med obema vrstama
oznak podaja tabela 6.1. Na slikah 6.10 in 6.11 smo uporabili vijolično v primeru, ko pripada
vodilna komponenta stanja seriji a∗, svetlo modro v primeru, ko pripada seriji b∗, in zeleno, ko
pripada seriji c∗.

Medtem ko prispevek resonance 6a∗ 1P o ostane izrazit tudi pri vǐsjih poljih, je identifikacija
vrha, ki pripada stanju 7a∗ 1P o pri večjih poljskih jakostih težja. Oscilatorska moč se porazdeli
med bližnja stanja, s katerimi je stanje 7a∗ 1P o močno skopljeno zaradi polja. Takšno prerazpo-
reditev moči opisuje t.i. sumacijsko pravilo (sum rule), ki sta ga za fotoionizacijo v električnem
polju zapisala Fang in Chung [110]. Omeniti velja, da drži pravilo samo v primeru, ko ne
upoštevamo radiativnega razpada na način, ki je bil opisan v preǰsnjem razdelku. Kot je razvidno
s slik 6.10 in 6.11, se lahko v električnem polju stanja s simetrijo 1P o mešajo s stanji prostega
atoma, ki prej niso bila dostopna z absorpcijo. Vrhove v spektru F ‖ P , ki sledijo 6a∗ 1P o,
pripǐsemo po naraščajočih energijah največji primesi stanja prostega atoma 6b∗ 1Ge, 1F o, 1Ho in
1Ie. Sledijo jim vrhovi 6a∗ 1F o, 1De, 1Ge in 1He, 6c∗ 1Ge, 1F o in 1De, 1P o ter 6b∗ 1Se. Podobno
mešanje je prisotno v primeru n = 7 in tudi za pravokotno polarizacijo (F ⊥ P ), kjer pa so
prisotne še primesi stanj s parnostjo (−1)L+1.

Sliki 6.10 in 6.11 govorita v prid že omenjenemu prednostnemu pravilu, ki v grobem pravi,



Chapter F – Razširjeni povzetek v slovenščini 151

da polje močneje sklaplja stanja z istim tipom korelacij. Ker so v odsotnosti električnega polja
iz osnovnega stanja z daleč največjo verjetnostjo dostopna stanja a∗ 1P o, v skladu s pravilom
pričakujemo, da bodo izraziti vrhovi izhajali iz stanj a∗. Kot je razvidno s slik, potrdi račun ve-
ljavnost pravila tudi za pravokotno eksperimentalno postavitev (F ⊥ P ), kjer ostajajo amplitude
vrhov z vodilnimi komponentami tipa b∗ in c∗ razmeroma majhne tudi za stanja z n = 7.

F.4.3 Neelastično sipanje fotonov

Sliki 6.14 in 6.15 prikazujeta primerjavo med izračunanimi in eksperimentalnimi fluorescenčnimi
pridelki, ki so jih izmerili Prince in sodelavci [47]. Za F ⊥ P so izmerjeni spektri normirani
na ploščino dubleta 5c/6b 1P o, medtem ko so spektri za F ‖ P normirani na velikost skoka v
fluorescenčnem signalu na pragu N = 2. Izračunani spektri so razmazani z Gaussovo funkcijo
širine 3 meV (FWHM) in pomnoženi s skupnim konstantnim faktorjem, tako da se ujemajo z
eksperimentom. Spektri so zaradi jasnosti razmaknjeni v vzdolžni smeri.

Amplitude vrhov, ki pripadajo seriji a 1P o, se močno povečajo, ko vklopimo električno polje.
Ta sprememba intenzitete je v glavnem posledica fluorescence, ki izhaja iz trkov nabitih delcev
[47] z deli eksperimentalne opreme; ioni in elektroni se najbolj sproščajo iz dvojno vzbujenih
stanj, ki rada razpadejo z avtoionizacijo. Emisijske črte v fluorescenčnih pridelkih imajo v tem
primeru asimetrično (Fanovo) obliko. Pri primerjavi izračunov z meritvami je zato potrebno
upoštevati tudi omenjeno ionsko komponento. Omeniti pa velja, da je ta efekt zanemarljiv pri
stanjih drugih simetrij. Na slikah 6.14 in 6.15 je celotni fluorescenčni pridelek (rdeča) razklopljen
na vsoto fotonskega (modra) in ionskega (zelena) signala.

V splošnem izračunani spektri dobro opǐsejo izmerjeni signal. Lege in intenzitete vrhov
izračunanih spektrov se ujemajo z eksperimentalnimi podatki do približno n = 10 ali n = 11.
Široki vrhovi, ki se pojavijo v spektrih nad stanji na 1P o v bližini praga N = 2, vsebujejo
prispevke stanj, ki so sklopljena z optično dovoljenimi stanji simetrije 1P o. Pri visokih kvant-
nih številih n prispevajo tudi stanja z vǐsjimi vrtilnimi količinami, ki pa jih nismo vključili v
račun. Model zato odpove pri stanjih z n & 10. Računi se nekoliko bolje ujemajo z meritvami
Rubenssona in sodelavcev [111], ki vsebujejo le primarni fluorescenčni signal (slika 6.16), vendar
je njihov doseg približno enak.

Posamezne vrhove v izmerjenih spektrih prepoznamo s pomočjo Starkovih diagramov (sliki
6.17 in 6.18). Za obe orientaciji polarizacije vpadne svetlobe pripada večji del najmočneǰsih vrhov
stanjem z vodilnimi komponentami iz (super)serije a∗, kar potrjuje veljavnost prednostnega
pravila tudi pri fluorescenci. Pri pravokotni polarizaciji vpadne svetlobe tako opazimo serijo
močnih vrhov, ki so na spodnji strani omejeni z dubletom (n − 1)c∗/nb∗ 1P o, na drugi pa z
vrhom na∗ 1P o; večina jih izvira iz stanj a∗ 1P e. Prednostnemu pravilu v prid govorijo tudi
močni vrhovi, ki se razvijejo iz stanj 6a∗ in 7a∗ 1Do (sl. 6.18). Pričakovali bi namreč, da je
zaradi lihe parnosti sklopitev, ki jo inducira zunanje polje, šibka.

Pri vzporedni polarizaciji vpadne svetlobe opazimo, da se velikost dubleta (n− 1)c∗/nb∗ 1P o

močno zmanǰsa, ko vklopimo električno polje. To razložimo z mešanjem bližnjih stanj 1Se in
1De, za katera je značilen zelo verjeten razpad z avtoionizacijo, ki zmanǰsa fluorescenčni pridelek.
Vpliv primesi avtoionizirajočih stanj je manj izrazit v primeru F ⊥ P , saj je sklopitev s stanji
s simetrijo 1Se enaka nič.
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Izjava

Disertacija predstavlja rezultate mojega samostojnega znanstvenoraziskovalnega dela.

Ljubljana, 5. 9. 2006 Andrej Mihelič


