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A variant of the Green's function nodal method derived from the boundary integral form of 

the multigroup neutron diffusion equation in rectangular geometry is presented. As usual in the 
nodal methods, the multi-dimensional diffusion equation is integrated in the transverse direction. 

The resulting 1D diffusion equation is solved following the Boundary Element technique in one 

dimension. In this way a weighted residual method is obtained, with a Green's function for 

weighting, but with different boundary conditions than normally applied in the Green's function 

nodal methods. Mathematical formulation of the method is given and the iteration procedure is 

described. A computer program BINDIF has been designed, based on the new method. Its 

capabilities include the solution of the multigroup neutron diffusion equation of 1D, 2D and 3D 

rectangular lattices. The BINDIF program has been checked against other methods used for 

global reactor calculations on benchmark problems, representative of realistic power reactor 
cores. The results indicate that the method is attractive to design highly efficient algorithms 

for a large mainframe, a personal computer or a parallel processor.
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I. INTRODUCTION

The neutron diffusion problem has long 

been solved to virtually any desired accuracy. 

Nevertheless there exists an interest in new 

methods that can offer improved computational 

efficiency which is essential in applications 

such as : software for small computers, reac-

tor core simulators and neutronics modules for 

programs tackling complex transients and core 

reload optimisation. 

Currently the fastest algorithms for solving 

the diffusion equation are different variants 

of the Nodal method (reviewed by Dorning(1) 

whereby the solution in a particular direction 

is obtained by integrating the diffusion equa-

tion in the transverse directions. In this way 

a multi-dimensional problem is reduced into a

set of one-dimensional problems. The solutions 

in each direction are coupled through the 

orthogonal components of the differential op-
erator which appear as an additional neutron 

source/sink terms in the one-dimensional equa-
tions. The performance of a nodal method 

depends on the efficiency of the algorithm for 

the solution of the one-dimensional diffusion 
equation. Several methods have been success-

fully tried in the past. An approach based on 
the Boundary Element techniques is described 

in the present work. 
The Boundary Element method was found 

successful in many fields(2) but in a direct 

application to multi-dimensional neutron diffu-
sion it was found difficult to gain significant
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computational efficiency compared to the Finite 

Difference and the Finite Element methods , 
for example. A similar conclusion can be 

drawn from the work of Itagaki(3) . In one 
dimension however, integration along bounda-
ries is not required because the boundary inte-

grals reduce to point values of the integrand 
on the boundaries. The boundary element 
method reduces to a straightforward boundary 

solution method(6) in one dimension. By this 
approach the diffusion equation is solved for 

the flux and the current values on the bounda-

ries and no trial functions are required to 
approximate the neutron flux distribution. 

Since the boundary conditions can be imposed 
exactly, the solution is analytical, provided 

the integrals are calculated with sufficient 

accuracy. Effectively, a weighted residual 
method is obtained, where the weighting func-

tion is the simplest fundamental solution(7) to 
the problem. Of course this is also a Green's 
function to some particular problem, although 

its boundary conditions (it goes to infinity as 

x->+-oo) are physically meaningless. Such 
Green's function is the consequence of the 

choice of the weighting function rather than 

the initial requirement, but the name "Green's 
function method" is retained for the sake of 

consistency in nomenclature with other similar 
methods. 

Several methods of solving the one-dimen-
sional diffusion equation using Green's func-

tions have been proposed by other authors. 
Kobayashi & Nishihara(5) used the boundary 

conditions that the Green's function vanishes 

on the boundaries of homogeneous zones. In 
this way the neutron current variable dis-

appears from the equations. The unknowns in 
the system of equations are only the neutron 

flux values on the boundaries. In designing 

a nodal method, this approach requires some 
additional effort in reconstructing the neutron 

current on the boundaries (and hence the aver-
age transverse leakage). Lawrence & Dorning(4) 

applied the boundary conditions that the Green's 
function equivalent of the incoming partial 

neutron currents vanish on the boundaries of 

homogeneous zones. In this way the quantities 
that define the neutron leakage are given

directly from the solution but as a penalty, 
the number of unknowns increases by a factor 

of 2. 

Compared to other Green's function meth-
ods the main advantage of the proposed method 
is the simplicity of the Green's (weighting) 

function which allows analytical derivation of 
some integrals which need to be evaluated, 

without prohibitive algebraic complexity. The 
computational efficiency of the new method 

for one-dimensional neutron diffusion problems 
has already been confirmed(2). Coupling the 

one-dimensional boundary solution technique 
with the Nodal method produces a new highly 

efficient multi-dimensional Green's Function 

Nodal method (BIN) which is described in the 

present work. 
Derivation of equations, general features, 

iteration strategy and the approximations in-
volved in the new method are described. 

Results obtained on benchmark problems, rep-
resentative of realistic power reactor cores 

are given. Details of the error behaviour, the 

convergence properties of the method on addi-
tional benchmark problems and the effects of 
different transverse leakage approximations 

are discussed elsewherec(10).

II. METHOD OF SOLUTION

1. Mathematical Formulation

A multigroup neutron diffusion equation is 

considered. The system of group diffusion 

equations is solved by the fission source iter-

ation technique(8) where initially a fission 

neutron source distribution is assumed, the 

equations are solved for each group and from 

the results the fission neutron source distri-

bution for the next iteration is constructed. 

For a particular group p the diffusion equation 

is

(1)

The symbols have their usual meaning. The 
neutron source term fg is given by

(2)

For simplicity consider a two-dimensional array 
of rectangular homogeneous zones (they may
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represent homogenized fuel assemblies). For his-

torical reasons these zones are commonly re-
ferred to as nodes in the description of the 

nodal methods. The numbering of the nodes 
and of the coordinates of their faces are illus-

trated in Fig. 1.

Fig. 1 Two-dimensional schematic represen-

tation of array of nodes illustrating 

indexation of nodes V(i, j)

Consider the node V (ij). The group diffu-

sion equation in direction x may be written 

as an integral average in the orthogonal direc-

tion y. For clarity the group index g is 

dropped. Use is made of the Fick's law which 

relates the neutron flux to neutron current to 

express the neutron transverse leakage Ly(j) 

in terms of the directional components of the 

current

(3)

(4)

(5)

(6)

(7)

The solution of the above one-dimensional 

equation yields the average neutron flux px(j)i

and current Jx(j)i on the node boundaries i 
(see Chap. II-2) and from them the average 
leakage in the x direction can be determined

(8)

This average leakage is used to approximate 

the transverse leakage distribution when seek-

ing solution for column (i) of nodes in the 

(orthogonal) y direction and vice versa (see Chap. 
II-4). 

By interchanging the x and the y variables 
and the corresponding indices, the integral 

average diffusion equation in the y direction 

is obtained. 
The extension to three dimensions is trivial. 

To determine the average flux the integration 
is performed over the two orthogonal direc-

tions. Similarly, the transverse leakage is the 

sum of the leakages in the two orthogonal 
directions.

2. Solution of One-dimensional

Diffusion Equation

The diffusion equation is solved in its weak 
form which is obtained by a weighted integra-
tion of Eq. (3) over a node. The node V(ij) 
in row (j) is implied. To simplify the nota-
tion the node indices (ij) and the row index 

(j) are dropped

(9)

Integrating by parts twice, the differential 
operator can be transferred from the flux px 
to the weighting function w and the boundary 
terms. The boundary element technique pre-
scribes the weighting function to be the sim-

plest fundamental solution(7) of the diffusion 
equation which must satisfy

(10)

where s is the Dirac delta function. It is zero 

everywhere except at (x=x) where it has a 

singularity. The integral over the singularity 
equals one by definition. In one-dimensional 

slab geometry the fundamental solution has
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the form : for px(x) is obtained :

(11)

where k=S/D. Note that this is a Green's 

function to a problem with boundary condi-
tions :

(12)

Such choice of the boundary condition dis-

tinguishes the proposed method from other 
Green's function methods, which are mentioned 

in the Introduction. The simplicity of the 
Green's function reduces the effort in prepar-

ing the global matrix coefficients and particu-
larly the weighted integrals of the neutron 

source, defined by Eq. (14), because it allows 
analytical derivation of the flux expansion 

coefficients from integral considerations (see 

Chap. II-3). The results presented in Chap.III 
indicate that the solution, obtained with the 

proposed weighting function is not in any 
way inferior in accuracy compared to the more 

sophisticated approach. 
Substituting expression (11) into Eq. (10), 

the integrals on the left-hand side reduce to 
an algebraic expression involving only flux 

and current average values at x and the 
boundary points xi-1 and xi. An equation

(13)

Note that Jx,i and px,i are the neutron cur-

rent in the x direction and the neutron flux 
at node boundaries x=xi averaged over the 

y-interval of row (j). 
Given the values of the flux and the cur-

rent on the boundaries and also given the 
neutron source distribution on the right-hand 

side, the above equation defines exactly the 
neutron flux (averaged over y) at all interior 

points x. 
Substituting x by the boundary points xi-1 

and xi and applying the neutron flux and 
current continuity across the boundaries, two 

equations for the node V(ij) in the x direction 
are obtained :

(14)

Assembling such equations for all i in row 

(j), applying the flux and current continuity 
conditions on the interfaces and the boundary 
conditions on the external boundaries, a global 
matrix for row (j) of nodes is obtained. This 
matrix is easily converted to tridiagonal form 
and solved for the average values px(j)i and 

Jx(j)i, assuming a given source on the right-
hand side. The same can be repeated for all 

(j). Similarly, the equations for the y direc-
tion can be constructed and solved. The

equations are coupled through the transverse 

leakage which appears in the source term on 
the right-hand side of Eq. (13). 

Note that the left-hand side of Eq. (13) is 
exact and the accuracy of the method depends 

entirely on the way in which the integral on 
the right-hand side is evaluated. No a priori 

assumption is necessary about the functional 
dependence of the neutron flux. This is the 

main difference between the currently pro-

posed method and other weighted residual
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methods which usually approximate the neu-
tron flux by polynomial trial functions. 

For a given source distribution and after 
solving for the flux and the current values 
on the node boundaries, Eq. (13) defines the 
neutron flux (and current) distribution at all 
interior points. Therefore the neutron source 
distribution f(x) for the next iteration, which 
is defined by Eq. (2), can be constructed to 
any desired accuracy (within the applied trans-
verse leakage distribution approximation). The 
weighted integrals of the source term, given 
by Eq. (14) can also be calculated exactly. The 

procedure is rather tedious, since the flux at 
every point is defined by an integral. Usually 
in the Boundary Element method, some sample 

points are selected at which the flux is calcu-
lated. Integration is then performed numeri-
cally by the Gauss quadrature rule (or similar). 
On the other hand, if the neutron source dis-
tribution and the transverse leakage are poly-
nomials, then the integral in Eq. (13) can be 
evaluated analytically. Only for the purpose 
of evaluating these integrals, the neutron flux 
distribution and the transverse leakage are 
approximated by an n-th order Legendre poly-
nomial expansion so that the neutron source 
distribution in polynomial representation for 
the next iteration can be constructed. 

Both of the above procedures for calculat-
ing the integrals have also been applied by 
Kobayashi & Nishihara(5). Numerical integra-
tion involved the Simpson's rule. The second 
order flux expansion coefficients were deter-
mined from the flux values on the boundaries. 
The latter approach proved to be computation-
ally much more efficient.

3. Neutron Flux Expansion

For integration purposes the neutron flux 
in the node V (ij) is expanded in local coordi-
nates in Legendre polynomials Pl(u) with 
coefficients g(ij)l. The local coordinate vari-
able u is obtained by a linear transformation 
of the interval [xi-1, xi] into [-1, 1]. The 
Legendre coefficients can be determined by 
the method of subregions(6) which is defined 
by expressions given below and where Eq. (13) 
is substituted for px(x),

(15)

Appropriate integration limits [xa, xb] corre-
spond to the following local coordinate inter-
vals [ua, ub]

[-1, 1] for the P0 component 

(This is equivalent to the neutron 
balance condition.) 

[0, 1] for the P0 component 

(Together with the Po component this guarantees correct average 
flux over each half-interval). 

[-1/2, 1/2]_for the P2 component 

[ 0, 1/2] for the P3 component 

(Together with the lower order com-ponents this guarantees correct av- 
erage flux over each quater-interval.)

The flux and the current values on the 
boundaries could also be used to determine 

the Legendre coefficients, but this approach is 
found to offer considerably less accuracy(10) 

for the same order of expansion. Coefficients 

derived by the method of subregions from 
Eq. (15) are usually preferred, at least for the 

lower order terms in spite of the more com-

plicated derivation. The same procedure is 
also applied in the orthogonal directions.

4. Transverse Leakage Treatment

To model the transverse leakage, Finne-
mann et al.(9) proposed the consistent parabolic 
approximation where the full continuity of L 
and D,dL/dx are demanded, and the linear-
ized variant which is an approximation to the 
above. Such a treatment is physically justified 
when for example 4th order polynomial trial 
functions are used in flux expansion. The 
transverse leakage is then a 2nd order poly-
nomial. In the new method currently described 
there are no assumptions about the flux. In 
view of other approximations the following 
simplified, linear average approximation seems 
reasonable. The leakage in the y direction 
Ly(j)i from node V(ij), on the boundary xi is 
determined as a linear average of the average
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leakages Ly(i,j) and Ly(i+1,j) in the neigh-
bouring nodes (i) and (i+1) of thickness h(i) 

and h(i+1), respectively :

(16)

and similarly for the orthogonal directions. 

From the average and the boundary values 

the Legendre polynomial coefficients of the 

transverse leakage are determined :

(17)

(18)

(19)

(20)

Numerical results have confirmed(10) that 

there is no loss in accuracy due to a simpler 

treatment of the transverse leakage. The 

advantages are a small simplification of the 

computer code and a slight improvement in 

efficiency.

5. Inner Iteration Strategy

Usually in the nodal methods the equations 

are constructed so as to demand iteratively 

the node-face averaged partial neutron current 

balance. In the proposed method the node-

face averaged flux and net current are deter-

mined. 

Without upscattering and transverse leak-

age, the fission source distribution from the 

previous outer iteration is sufficient to solve 

the system of equations for each group ex-

plicitly. The upscattering effects can usually 

be overcome without additional iterations by 

using the flux distribution solution from the 

previous outer iteration to obtain the total 

neutron source. The transverse leakage dis-

tribution approximation is constructed from 

the average leakage values from a node. These 

are calculated from the average net currents, 

which we seek in the solution for a particular 

energy group. Therefore additional neutron 

source terms appear on the right-hand side, 

which depend on the solution. An implicit 

scheme is obtained which demands iterative 

solution. These are referred to as the inner

iterations. The average leakages from the 

previous outer iteration are used as an initial 
guess. Frequently, a single inner iteration is 
sufficient. An attempt to design an explicit 
scheme would require a simultaneous solution 
for all the unknowns within a group, with a 

matrix of large bandwidth, therefore the iter-

ative scheme is preferred. 
With mesh refinement, in the limiting case 

the transverse leakage is the gradient of the 
directional component of the neutron current. 

This is always larger (in absolute value) than 

the average gradient determined from the 
average currents on the boundaries of the 

coarse mesh nodes. On the ultra coarse mesh 
of the IAEA-2D benchmark problem for ex-

ample (see Chap. III-1), the maximum transverse 
leakage source is less than 15% of the total 

neutron source averaged over the domain of 
the solution. Convergence of the transverse 

leakage is faster as compared to the outer 
iterations and hence a single inner iteration 

is sufficient. On the other hand for fine meshes 

(refining the mesh by a factor of 10) the trans-
verse leakage source locally exceeds 85% of 
the average source. Inner iterations become 

essential to achieve convergence. Considering 
the above, the best performance of the method 

can be expected on ultra-coarse meshes, what 
is in agreement with the design objectives of 

the algorithm.

6. Outer Iteration Strategy

The group equations are solved by the 

usual fission source iteration technique. Outer 

iteration acceleration optimisation is beyond 

the scope of the present analysis. The one-

parameter cyclic Chebyshev iteration acceler-

ation was applied because it was easy to 

implement. An iteration cycle consists of K 

outer iterations. Acceleration is performed on 

the polynomial expansion coefficients of the 

fission neutron source. The acceleration 

parameter ok,K for the k-th step of the cycle 

of length K is

(21)
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where b is the normalized second-largest eigen-
value of the iteration operator (i.e. the domi-

nance ratio) and a the lowest normalized eigen-
value. Variants of the Chebyshev acceleration 

method differ in the assumptions about a and 
b. An algorithm such as used in FINELM is 

adopted ; the value (a=0) is chosen and the 

acceleration parameters are sequenced in 
Lebedev ordering(11). For the cases considered 

the optimal convergence rate was observed 
for a cycle of length (K=6). Longer cycle 
lengths produced no improvement. The appro-

priate Lebedev ordering sequence of k values 
is (k =2, 5, 3, 4, 1, 6). 

The additional advantage of the selected 

acceleration scheme is that no additional coeffi-
cient vectors need to be stored (as a new coeffi-

cient is calculated and extrapolated, the old entry 
is immediately updated). 

For numerical stability reasons the extra-

polation of higher order coefficients is switched 
off in cases where the coefficients change sign 

between two iterations. 
Since the inner iteration are not normally 

persued to full convergence, the outer iteration 
acceleration is also affected. For this reason 

the acceleration is switched off after each 
Lebedev cycle until the eigenvalue dominance 

ratio stabilizes again. The problem is not 

encountered in one-dimensional cases with no 
upscattering.

III. RESULTS

A test program BINDIF was coded accord-
ing to the above description. The test cases 

were chosen to indicate the performance of 

the method on realistic problems in comparison 
to other codes. Results for the following 

cases are given : 

(1) BSS-11 the two- and three-dimensional 
IAEA benchmark representative of a typi-
cal PWR core from the ANL-7416 Bench-

mark Problem Book(12), 

(2) Biblis PWR core benchmark(17) which 
represents a real operating reactor with 
"checkboard" fuel loading pattern

, 
(3) BSS-13 a 7x7 BWR fuel assembly model 

from the ANL-7416 Benchmark Problem 

Book.

The BINDIF solutions were compared 

against the fine mesh benchmark reference 
solutions in which the error is assumed to be 

negligible. In addition, calculations for com-

parison were performed with a Nodal Expan-
sion code NEXT(13) and the Finite Element 

code FINELM(14). Solutions from literature 

are also quoted. In the following examples 
BINn represents the proposed Green's Function 
Nodal method with n-th order flux expansion 

for integration, NEMn refers to the Nodal 

Expansion method solution and FEMn to the 
Finite Element method solution using n-th 

order trial functions to approximate the neu-
tron flux. 

The selection criteria for the solutions 
were the minimum central processor execu-

tion time (CP) for a solution on the ultra-coarse 
mesh (one node per assembly/fuel pin), up to 5% 

error in the local (node averaged) fission source 

distribution ep and 10 pcm error* in the multi-

plication factor ek. The number of outer 
iterations Nit is also considered.

1. BSS-11 2D and 3D IAEA Benchmark

This is perhaps the most widely used 
benchmark for testing the diffusion codes. 

Although the geometry and the cross sections 
are idealized (see Fig. Al and Table Al in 

APPENDIX) it is representative of a PWR core 

and provides a reasonable indication of the 
behaviour of a code in realistic problems. 

In Table 1 the error in keff, the fission 
source distribution, the number of iterations 

and the execution time in comparison with 

other programs of comparable accuracies are 

given for the 2D and 3D cases in quadrant 
(/4) or octant (/8) geometry on 20 cm mesh. 
Programs BINDIF, NEXT and FINELM were 

executed on the VAX-11/750 machine. Their 

efficiency can be compared directly. The re-
sults for other programs are quoted from 

literature and refer to execution on more 

powerful machines. 
In order to allow some degree of inter-

comparison with other programs the 2D and 
3D test cases were solved using BINDIF on 

a variety of machines. The execution times 
for an octant of the 2D and the 3D cases on
* pcm=parts per 100,000=10-5 keff.
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Table 1 Comparison of results for IAEA -2D benchmark problem on 20 cm mesh by various 

codes (Where indicated the quoted results have been taken from the literature .)

20 cm mesh are presented in Table 2.

Table 2 Comparison of CP execution times (s) 

on various machines for BINDIF solu-

tion of octant of IAEA benchmark 

problem on ultra coarse mesh

The results indicate that BINDIF is com-

parable in efficiency to other nodal codes and 

much faster than the finite element codes. Its 

CP-time per iteration is favourable but the 

number of outer iterations indicates that its 

procedure for accelerating the convergence of 

outer iterations is inferior to the asymptotic 

acceleration with coarse mesh rebalancing 

which is commonly used in other nodal codes.

2. BIBLIS PWR Core

It has to be emphasized that no effort 

was made to optimize the coding for machines 

other than VAX. The same code was com-

piled with FORTRAN-77 compiler on each 

machine and executed with default options.

The BIBLIS core is a 2D benchmark which 

represents a real operating reactor. It has 
been proposed by Finnemann & Wagner and 

used by several authors to test the diffusion 

code capabilities. The geometry and the cross 
sections are taken from Ref. (r) and are given 
in Fig. A1 and Table A2. 

The results of the BINDIF calculations can 

be compared against the published values in 
Table 3.

Table 3 Comparison of results for BIBLIS PWR benchmark problem on 23.1226 cm mesh by various 

codes (Where indicated the quoted results have been taken from the literature.)
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Errors in the multiplication factor and 

the fission source distribution are comparable 

to those in the IAEA-2D benchmark. The 

increase in the BINDIF execution time is 

primarily due to a larger number of outer 

iterations. Direct comparison of the execution 

times of the other two codes is not possible 

because they were run on considerably more 

powerful machines.

3. BSS-13 BWR Fuel Assembly

The BSS-13 benchmark represents a BWR 

fuel assembly with homogenized fuel pin cross 

sections and reflective boundary conditions. 

The geometry of the problem is shown on 

Fig. A2 and Table A3. The dimensions of 

any homogeneous region never exceed 2 cm 

so this is essentially a fine mesh calculation. 

The aim of the exercise is to investigate 

the efficiency of our method for fine mesh 

calculations needed to homogenize the fuel 

assembly cross sections and for calculating 

the pin power distributions within the as-

sembly. 

The neutron fission source distribution was 

calculated using BINDIF for various orders of 

the flux expansion and the results are pre-

sented in Table 4.

Table 4 Comparison of solution parameters for 

BSS-13 benchmark BWR fuel assembly 

problem (Reference k ff is about 1.0855)

The exact error in the keff can not be 

estimated because the reference solution is 

only given up to four decimal places. It 

can be noted that keff and the neutron fission 

source distribution are not very sensitive to a 

decrease in the order of the flux expansion. 

The execution time however, is considerably 

longer than in the previous test cases. This

is primarily because inner iterations are now 

essential due to the fine mesh. A refinement 

in the inner iteration procedures could enhance 

the efficiency of the code for this type of 

problems.

IV. CONCLUSIONS

A variant of the Green's function nodal 
method is presented with the following key 

features : 

, No a priori assumptions about the solution 
are necessary (polynomial variation on the 

neutron flux, for example). The 1D solution 
is analytical except for the approximate 

integration of the source term. 
, The solution parameters are the node face 

average neutron flux and the net neutron 
current. 

, The algorithm is designed so that a whole 
row of nodes is solved directly. This en-

hances the efficiency when the same code 
is applied to the 1D problems. It also 

allows easy adaptation of the algorithm 

for parallel processing. 
, A very simple transverse leakage treat-

ment is used which does not add to the 
overall error. 

The results presented indicate that the 
BIN method is well suited to design algorithms 

for 1D, 2D and 3D neutron diffusion problems. 

The currently adopted solution procedure is 

particularly efficient on ultra-coarse meshes. 
The advantages of the method are the fol-
lowing : 

, The method allows computational efficien-

cy which makes even 3D solutions on a 

personal computer possible. Very few 
existing codes exhibit this featureo(18). 

, The same code can be used to solve 1D, 
2D as well as 3D problems with little loss 

in efficiency on account of generality. 

, Good accuracy control is possible by vary-
ing the mesh density and the order of the 

neutron flux expansion for integration. 
The fission source iteration technique for 

determining the keff in outer iterations has 

been extensively used and tested in other 

programs. In comparison with other nodal 
codes which use the asymptotic acceleration
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in combination with coarse mesh rebalancing 

instead of the Chebyshev acceleration scheme , 
a significant improvement in computational 

efficiency seems possible. 

An improvement in the inner iteration pro-

cedures would allow better performance on 

the fine mesh calculations and in problems 

such as the BSS-13 benchmark described in 

Chap.III-3.

Mild inhomogeneities in the cross section 

data such as those produced by the burn-up 

gradients can also be accomodated in the 

coarse mesh nodal algorithms. This is con-

veniently achieved by defining a linear spatial 

dependence coefficient of the absorption cross 

section such that correct average variation of 

koo across the node in each direction is pre-

served. The additional absorption rate com-

ponent can be treated as a source term in a 

similar manner like the transverse leakage. 

Although the code has not yet been com-

pleted to meet the production code standards, 

it has shown computational efficiency com-

parable to the fastest nodal codes available. 

The experience gained with this code can form 

the basis for designing a highly efficient pro-

duction code on a large mainframe, a personal 

computer or a parallel processor.
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[APPENDIX] Benchmark Geometry Definitions

(Figs. A1~2, Tables A1~3)

Fig. A1 IAEA benchmark specifications

Table A1 Cross section data for IAEA benchmark problem

Table A2 Cross section data for BIBLIS PWR benchmark problem
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Fig. A2 BWR fuel assembly (BSS-13 benchmark) geometry and material assignment

Table A3 Cross section data for BSS-13 BWR fuel assembly benchmark problem
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