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Abstract — A consistent, effective diffusion homogenization method for cross sections for pressurized
water reactors (PWRs) is presented. It can be applied to obtain cell-averaged as well as assembly-
averaged cross sections. Since no additional parameters are necessary, standard diffusion codes can
be used. It is shown that a few-group diffusion calculation over a fuel assembly compares favorably
with a transport calculation. This allows transport theory methods to be restricted to lattice cell cal-
culations. The application of the critical albedo search in fuel assembly calculations provides Sfor the
approximate treatment of the radial leakage and helps to decouple calculations over individual Suel
assemblies from their surroundings. Examples of calculations on unit cells, fuel assemblies, and real-

istic PWR core geometry are presented.

I. INTRODUCTION

Homogenization of heterogeneous regions in reac-
tor calculations is necessary because in routine appli-
cations, detailed calculations are restricted to relatively
small heterogeneous regions because of computer lim-
itations, in spite of the increased capacity of modern
computers. The simplest homogenization method uses
flux and volume weighting of the cross sections. It is
referred to as the FVH method in this paper. The
method is attractive because of its simplicity, but it suf-
fers severe drawbacks due to its inaccuracy, particularly
when relatively large, heterogeneous regions contain-
ing strong absorbers are to be homogenized.

The problem of cross-section homogenization has
been addressed by several authors, and satisfactory re-
sults have been obtained in their particular areas of ap-
plication. For homogenization of fuel assembly cross
sections, for example, Henry, Worley, and Morshed!
derived effective diffusion parameters by a response
matrix method. In the equivalence theory (ET),
Koebke? defined direction-dependent diffusion con-
stants and flux heterogeneity factors. The generalized
equivalence theory (GET) by Smith? introduced flux
discontinuity factors and followed essentially the same
approach: With additional parameters and with the use
of modified diffusion codes, the reaction rates of ref-
erence heterogeneous problems in equivalent homog-
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enized solutions were preserved exactly. A further step
in the development of the homogenization methods was
taken by Koebke* in the simplified equivalence theory
(SET), which was tested for pressurized water reactor
(PWR) applications. With the definition of a single ad-
ditional parameter per group and the use of standard
diffusion codes, satisfactory results were obtained.

For lattice cell homogenization, the Superhomog-
eneisation (SPH) method was described by Kavenoky?®
and recently elaborated by Hébert and Benoist.®7 It is
based on collision probability theory to produce equiv-
alent homogenized lattice cell transport cross sections
for whole-assembly transport calculations. A variant
of the method has also been presented by Hébert” to
derive diffusion equivalent cell cross sections, primarily
intended for two-group pin-by-pin global reactor cal-
culations. In this work, the radial leakage is not treated
explicitly.

These methods rely on transport calculations for
the pin cell and for the whole assembly and its sur-
roundings. When the ET and GET methods are ap-
plied, a modified diffusion code for global reactor
calculations is also required.

Further work on cross-section homogenization
methods with the use of discontinuity factors has been
reported, such as that presented by Zhang, Rizwan-
uddin, and Dorning.”'° Their method has been dem-
onstrated on several one-group cases, one of them
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representing a fuel assembly problem with realistic ge-
ometry. The rigorous mathematical derivation offers
the additional advantage of producing local power dis-
tributions without further approximations, but the
method is rather elaborate even in the one-group case.
It may find its place in the next generation of reactor
core calculation software. On the other hand, our ap-
proach relies more on simple proven methods, with ex-
tensions and simplifications so as to introduce minimal
additional errors. The proposed method is compatible
with existing lattice and diffusion codes.

The aim of this paper is to describe an effective dif-
fusion homogenization (EDH) method for cross-section
homogenization. It is derived by demanding conserva-
tion of reaction rates and surface partial currents in an
average sense. As is shown later, for fuel assembly ho-
mogenization, the EDH method is a special case of the
SET method (or the GET method) where the same dis-
continuity factor is assumed on all faces of the homog-
enized region and used to normalize all cross sections,
including the diffusion constant. The main differences
in the EDH method are a further simplification com-
pared with the SET method and its application to de-
rive effective homogenized diffusion parameters for
lattice cells as well as for whole assemblies. This allows
fuel assembly calculations to be performed in the multi-
group diffusion approximation without any significant
loss of accuracy. Reflector diffusion parameters are de-
rived in a manner equivalent to the SET method.

In the EDH method, the radial leakage is treated
explicitly by the appropriate selection of the boundary
conditions. For cell calculations, these are obtained
from the heterogeneous transport solution. In the het-
erogeneous assembly calculation, the radial leakage is
treated by imposing critical albedo boundary condi-
tions. The same boundary conditions are used in the
equivalent homogenized problems. The critical albedo
assumption provides that the radial leakage from a fuel
assembly is correct on average in a critical core (which
is usually of interest) and helps to decouple individual
fuel assembly calculations from their surroundings. The
advantage of the EDH method over the diffusion vari-
ant of Hébert’s SPH method’ is the simple, explicit
treatment of the radial leakage and the application of
the method in few-group rather than two-group form.
The analogous “surface leakage model” appears as an
option in the work by Hébert and Benoist® and Hébert
and Mathonniére® but only for fuel assembly homog-
enization, in a more elaborate way.

The main characteristics of the proposed method
are as follows:

1. A standard diffusion code is used for fuel assem-
bly as well as for global reactor calculations. Transport
methods are limited to lattice cell calculations.

2. No additional parameters are introduced in ho-
mogenized cross sections.
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3. Radial leakage is treated explicitly. For fuel as-
sembly calculations, this is done by a critical albedo
search, thus approximately treating the surrounding
medium of a fuel assembly.

4. Because of the approximate treatment of the fuel
assembly surroundings, the assembly cross sections are
environment independent (i.e., the cross sections of two
identical assemblies placed at different locations in the
core are the same).

The practical applications presented in this paper
indicate that the proposed method is suitable for PWR-
type calculations. It introduces negligible error even
for regions containing strong absorbers and offers sig-
nificant savings in computation time with respect to
other homogenization methods, particularly transport-
solution-based ones.

II. DESCRIPTION OF THE EFFECTIVE
DIFFUSION HOMOGENIZATION METHOD

I1.A. Basic Principles of the Method

Consider a heterogeneous region embedded in some
other (heterogeneous) medium. Define an equivalent
homogeneous region, which has the same volume and
shape as the heterogeneous region of interest. A set of
nuclear parameters is required, so that the homogenized
region will respond as much as possible in the same way
as the heterogeneous region.

Let us assume that a reference solution (i.e., neu-
tron flux distribution) for the heterogeneous region to
be homogenized is available (either by an explicit so-
lution over the region of interest and its surroundings
or by an appropriate selection of boundary conditions
to treat the surroundings approximately). Either trans-
port or diffusion theory calculations can be applied.

In defining equivalent homogenized cross sections
for a certain region, it is customary to impose condi-
tions on the conservation of the group average flux and
the reaction rates. When the effective neutron multi-
plication factor k,; and the group average flux values
in the reference heterogeneous region match those in
the equivalent homogenized region and reaction rates
are conserved, the total leakage per group, i.e., the net
current integrated over the outer boundary of the re-
gion, is also conserved. This follows from the neutron
balance condition. With these constraints, partial cur-
rents on the region boundary in general cannot be con-
served without introducing additional parameters.
Therefore, for a given partial incoming current, the ho-
mogenized region (assuming FVH cross sections) will
respond with incorrect outgoing currents, compared
with the reference heterogeneous case.

The information on the neutron flux is not really
needed in the solution, except to calculate the reaction
rates, fission density in particular. If reaction rate con-
servation is imposed a priori, the condition on average
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flux can be relaxed, and the condition on partial cur-
rents conservation can be imposed instead.

In deriving the EDH method, definitions of the ef-
fective diffusion cross sections and the effective flux
similar to those in the SPH method are applied:

~ ~ 1
L =pgly, and ¢,= — ¢, , 0))]
g

where

X, . = FVH average cross section for reaction
X in group g

¢, = average flux

Lo $g = corresponding effective cross section and
flux.

The diffusion constant is treated in the same way as the
Cross sections, except in the case of the reflector con-
stants, as is shown later. Scaling parameter g is de-
fined such that the partial currents on the boundary are
conserved on average. This is an additional assumption,
compared with some other methods, which is justified
when the partial currents are approximately constant
along the region boundary.

To calculate the partial currents on the boundary
of the homogenized region, it is convenient to derive
an analytical solution of the problem. This is possible
because the homogenized regions usually have simple
geometry. Exact solutions can be derived for circular
and slab regions, while for rectangular regions, the sep-
arability assumption is required. Although this assump-
tion is not entirely justified, it was found to have a
negligible effect on the final results in view of other
approximations.

A set of equations could be constructed to obtain
the u, parameters in closed form; however, because of
its simplicity and negligible calculational effort, an it-
erative procedure is preferred. Iterations consist of the
following steps:

1. Define an equivalent homogeneous region of the
same volume and shape for which a reference hetero-
geneous solution is available.

2. Define an initial guess for the cross sections and
the diffusion constant (e.g., by the FVH method).

3. Solve the diffusion equation for the homoge-
neous region using boundary conditions on the bound-
ary flux values from the reference solution. Note that
the volume average flux and the average boundary net
current will differ from the reference solution.

4. Define the scaling factor 1, as the ratio of the
initial and the calculated volume average flux in group g.

5. Scale the cross sections {including the diffusion
constant) according to Eq. (1) to conserve the reaction
rates.
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6. Reiterate beginning from item 3 until the differ-
ence between the reference and the calculated leakage
is negligible compared with the total neutron source in
each group.

When EDH cross sections are used in the usual dif-
fusion calculations over homogenized regions, the so-
lution for the neutron flux is such that the reaction rates
are conserved. Note that the true average flux in a ho-
mogenized region can also be reconstructed if the scal-
ing parameter u, is saved together with the other cross
sections for each homogenized region. The EDH cor-
rection to the cross sections does not affect the infinite-
medium multiplication factor k., since the scaling
factors p, cancel out.

This procedure is adequate and well suited for re-
gions in which partial currents along the boundary do
not change significantly. The reflector is a specific case
where this condition is severely violated even in one-
dimensional geometry. Furthermore, in the reflector,
it is strictly necessary to conserve the partial currents
on the internal boundary, while the conditions on the
outer boundary are of less significance. This request can
be accommodated in the proposed procedure quite sim-
ply by imposing the zero-flux condition on the exter-
nal boundary. To match the partial currents on the
internal boundary, another iteration loop is added in
which the group diffusion constants are varied until full
consistency of partial currents on the internal bound-
ary between the reference and the analytic solution over
the homogenized reflector is obtained. In this specific
case, the method is applied in a one-dimensional form
and is practically equivalent to the SET method.

The steps in deriving equivalent diffusion param-
eters by the EDH method are quite trivial, except step
3, which requires the analytic solution of the diffusion
equation in the homogenized region. This is described
in Sec. 11.B for some typical shapes of homogenized
regions.

I1.B. Solution of the Diffusion Equation

Consider the multigroup neutron diffusion equa-
tion in one-dimensional geometry for a homogeneous
slab or a circular region:

2 _ X
D)V by + Lrg)b(e) = . 22V Ercny bemy
eff h

+ 2 Es(hﬂg)d)(h) > (2)

h+g
where

_ 2
Er(g) - EG(X) + D(g)B + hZ Z:S(zf,Hh)
*8

D,y = group g diffusion constant
La(e) = group g absorption cross section

Lse) = group g fission cross section
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v(gy = number of neutrons per fission in group g
X(gy = fraction of fission neutrons born in group g
¢ () = neutron flux in group g

B? = transverse buckling.

Divide Eq. (2) for each group by Dy,,. Define the La-
place operator:

V2 NE=0 . 3)

Use the eigenfunctions ¢ of this operator as trial func-
tions. On substitution and rearrangement, Eq. (2) can
be written in matrix form:

(G-NDE=0, @)
where

% = vector of space-dependent functions with el-
ements a; £ (Ax)

I = unit diagonal matrix.

The diagonal elements g; and the off-diagonal ele-
ments g; of matrix G are

1 X (i)
NI B IPP. (O R
8ii D(i)[ (i) Koy (i) “f(i)
and

1 X(i
&=~ [‘ﬂ vy Eroi + Esuai)] . (5)

Dy L kegy

A nontrivial solution exists only when the determinant
of (G — N?I) is zero; hence, the \? are calculated as the
roots )\f of the characteristic polynomial of the ma-
trix G. For each A/ value, the ; are the elements of the
corresponding eigenvector. A general solution of the
diffusion equation is

®=H-F,;a+H-F,-b , (6)
where

H = matrix constructed from the eigenvectors of G

F, = diagonal matrix, the elements of which are the
odd components £, (\; x) of the eigenfunctions.

Similarly, elements f, (\; x) of the diagonal matrix F,
are the even components of the eigenfunctions. Vectors
a and b with elements ¢, and b, are coefficients deter-
mined from the boundary conditions.

In slab geometry, the eigenfunctions are hyperbolic,
trigonometric, or a combination of both, depending on
whether the A; values are purely real, imaginary, or
complex. In circular geometry, the eigenfunctions are
the Bessel functions.

Define vector g with elements ¢, ., which are the
flux values on the boundary at (x = +x, for slabs and
x = x;, for circular regions) taken from the reference
solution. In slab geometry, the same flux value is as-
sumed on both boundaries. Since symmetric boundary
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conditions are imposed, the coefficients a; of the odd
components vanish. The coefficients b; are easily cal-
culated from

H-F,b=gq . @)

For a reflector in slab geometry with a zero-flux ex-
ternal beundary condition, the procedure is very sim-
ilar. The boundary condition on the inner boundary
®p(g) At (X = —X,,) is applied, where x,, is the reflector
half-thickness. Note that the equation for the coeffi-
cients b; and the derived expression for the average
flux remain the same because

a; fa(Nixp) = =b; f(Nixp) ®)

which follows from the zero-flux boundary condition.
More care is required in deriving the expression for the
neutron current.

The solution procedure for circular regions (and
slab geometry) is exact. In the case of square regions,
the leakage is equal in each direction. By integration of
the solution in the transverse direction, it can be shown
that through the separability assumption, the transverse
leakage component degenerates into an effective trans-
verse buckling BZ. Using the relation

DgByqug = %Lg ’ ®
where L, is the total leakage rate from group g, the
transverse buckling can easily be calculated, since L,
is known from the reference solution and must be re-
produced exactly by the equivalent homogeneous dif-
fusion solution. Rectangular and three-dimensional
regions can be treated in a similar manner.

The implicit albedo boundary conditions for the
equivalent homogeneous cell are effectively obtained
from the average flux and current on the cell bound-
ary, as calculated in the transport solution for the cell.
The net current is calculated from the net leakage. For
group g, the boundary condition in the diffusion ap-
proximation is

Jb(g) — 1|:l - Ol(g):| (10)
Pogy  2L1H+ o

where &, and J,, are the average boundary flux and net
current, respectively, and « g is the group albedo.

For fuel assembly homogenization, the albedo
boundary conditions are defined directly by the criti-
cal albedo search. At present, the albedo is assumed to
be group independent.

I11. APPLICATION TO FUEL ASSEMBLY
HOMOGENIZATION

To test the proposed homogenization methods, the
Koebke benchmark* was analyzed. It was used to
compare the proposed method with the SET method
and to compare the nodal transport and the nodal dif-
fusion solutions in a fuel assembly.
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TABLE I
Four-Group Cross Sections for the Koebke PWR Benchmark Problem*
Parameter g F1 F2 CW CR SS RW
vE g (cm™h) 1 0.00812 0.00812 - -——- - -—-
2 0.0006 0.000696 ——- - -—= -—-
3 0.00792 0.00912 - - - ——-
4 0.0888 0.1248 - - -——- ——-
Zag (cm™") 1 0.0039 0.0039 0.00024 0.0017 0.001 0.00035
2 0.00225 0.00229 0.000016 0.0077 0.00077 0.000026
3 0.0223 0.0228 0.0015 0.099 0.0082 0.0013
4 0.07 0.086 0.027 0.54 0.11 0.028
T(gogrn (cm™h) 1 0.061 0.061 0.078 0.072 0.0026 0.084
2 0.061 0.061 0.1 0.055 0.0034 0.11
3 0.062 0.061 0.099 0.049 0.0031 0.13
D,y (cm) 1 2.6 2.6 3.3 2.4 1.8 2.6
2 1.1 1.1 1.2 1.1 0.94 1.4
3 0.84 0.84 0.71 0.63 0.38 0.84
4 0.35 0.35 0.26 0.21 0.36 0.24
X (o) 1 0.7517 0.7517 —— — - —
2 0.2483 0.2483 - -— - -

*F1 and F2 are low- and high-enriched fuel, respectively; CW is the water-filled guide thimble; CR is the control rod;
SS is the stainless steel core shroud; and RW is the water reflector. Fission neutrons appear in groups 1 and 2 only. The
number of neutrons per fission » is 2.8 in group 1 and 2.4 in other groups.

The Koebke PWR benchmark is a simplified PWR
core with fuel assemblies of 12-cm side length and 8 x 8
channel array, four channels containing guide tubes.
The guide tubes contain control rods or else they are
filled with water. The core is surrounded by a 1.5-cm-
thick stainless steel shroud. The total thickness of the
reflector region is 12 cm. The geometry of the core and
of the fuel assemblies is taken from Ref. 4 and is shown
in Fig. 1. The four-group cross sections for different
core constituents are given in Table 1.

The four-group cross-section set was applied to
generate a full-core heterogeneous solution in the dif-
fusion approximation by GNOMER, which is a Green’s
function nodal diffusion code,'! using solution meth-
ods described in Ref. 12. The solution over individual
fuel assemblies was also obtained with GNOMER, and
a critical albedo search was applied on the boundary
conditions. Condensation to two groups and homog-
enization by the EDH method were performed to ob-
tain the effective diffusion parameters for each type of
assembly. Reflector constants were derived for a con-
figuration similar to that used by Koebke*: The row of
assemblies across the core diameter was considered, wa-
ter channels and control rods were ignored, and the cal-
culation was performed in one dimension (ignoring
leakage in the y direction). The assembly homogenized
cross sections are given in Table I1.

The results of the core power distribution calcula-
tions are presented in Fig. 2. Coarse-mesh results were
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calculated with the GNOMER code, and they corre-
spond to one mesh per assembly and third-order flux
expansion for integration purposes. Convergence cri-
teria were selected so that the iteration error is negli-
gible. Only the results for the rodded core are given as
these were more restrictive in terms of accuracy than
those for the unrodded core.

When the heterogeneous diffusion solution was
compared with the reference, which was calculated with
a nodal transport method, the agreement was very

TABLE 11

Assembly Cross Sections for the Koebke Benchmark
Problem Averaged by the EDH Method

g| Dy Loger vEf (g Lg-g+) H(g)
FL |1 [1.50400 | 0.0080867 | 0.0047576 | 0.01873042 | 0.9983
2 {0.35629 {0.0694918 | 0.0857355 - 1.0361
FH | 1]1.52340 {0.0081108 | 0.0051284 | 0.01799933 | 1.0006
2 (0.36045 [ 0.0858192 [ 0.1216174 ——- 1.0490
FC | 1]1.43368 | 0.0100475 | 0.0046210 | 0.01805838 | 0.9868
2 10.30619 | 0.0789324 | 0.0757924 - 0.8890
R?® [1(1.02020 | 0.0014103 -——- 0.03087685 | 1.0827
2 (1.21120 | 0.1004083 -——= -—— 2.7003

“The flux- and volume-weighted two-group reflector diffu-
sion constants are 1.42065 and 0.25344, respectively.
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TABLE I
Four-Group Cross Sections for the Koebke PWR Benchmark Problem*
Parameter g F1 F2 CW CR SS RW
vEpg (cm™") | 0.00812 0.00812 - - - -
2 0.0006 0.000696 -— - - -
3 0.00792 0.00912 - - - -
4 0.0888 0.1248 -— - -——= -
Zag (em™) 1 0.0039 0.0039 0.00024 0.0017 0.001 0.00035
2 0.00225 0.00229 0.000016 0.0077 0.00077 0.000026
3 0.0223 0.0228 0.0015 0.099 0.0082 0.0013
4 0.07 0.086 0.027 0.54 0.11 0.028
Z(gog+n (cm™") 1 0.061 0.061 0.078 0.072 0.0026 0.084
2 0.061 0.061 0.1 0.055 0.0034 0.11
3 0.062 0.061 0.099 0.049 0.0031 0.13
D,y (cm) 1 2.6 2.6 3.3 2.4 1.8 2.6
2 1.1 1.1 1.2 1.1 0.94 1.4
3 0.84 0.84 0.71 0.63 0.38 0.84
4 0.35 0.35 0.26 0.21 0.36 0.24
X(2) 1 0.7517 0.7517 -—- - - -
2 0.2483 0.2483 - - - -

*F1 and F2 are low- and high-enriched fuel, respectively; CW is the water-filled guide thimble; CR is the control rod;
SS is the stainless steel core shroud; and RW is the water reflector. Fission neutrons appear in groups 1 and 2 only. The
number of neutrons per fission » is 2.8 in group 1 and 2.4 in other groups.

The Koebke PWR benchmark is a simplified PWR
core with fuel assemblies of 12-cm side length and 8 x 8
channel array, four channels containing guide tubes.
The guide tubes contain control rods or else they are
filled with water. The core is surrounded by a 1.5-cm-
thick stainless steel shroud. The total thickness of the
reflector region is 12 cm. The geometry of the core and
of the fuel assemblies is taken from Ref. 4 and is shown
in Fig. 1. The four-group cross sections for different
core constituents are given in Table 1.

The four-group cross-section set was applied to
generate a full-core heterogeneous solution in the dif-
fusion approximation by GNOMER, which is a Green’s
function nodal diffusion code,'! using solution meth-
ods described in Ref. 12. The solution over individual
fuel assemblies was also obtained with GNOMER, and
a critical albedo search was applied on the boundary
conditions. Condensation to two groups and homog-
enization by the EDH method were performed to ob-
tain the effective diffusion parameters for each type of
assembly. Reflector constants were derived for a con-
figuration similar to that used by Koebke*: The row of
assemblies across the core diameter was considered, wa-
ter channels and contro! rods were ignored, and the cal-
culation was performed in one dimension (ignoring
leakage in the y direction). The assembly homogenized
cross sections are given in Table II.

The results of the core power distribution calcula-
tions are presented in Fig. 2. Coarse-mesh results were

NUCLEAR SCIENCE AND ENGINEERING

calculated with the GNOMER code, and they corre-
spond to one mesh per assembly and third-order flux
expansion for integration purposes. Convergence cri-
teria were selected so that the iteration error is negli-
gible. Only the results for the rodded core are given as
these were more restrictive in terms of accuracy than
those for the unrodded core.

When the heterogeneous diffusion solution was
compared with the reference, which was calculated with
a nodal transport method, the agreement was very

TABLE 11

Assembly Cross Sections for the Koebke Benchmark
Problem Averaged by the EDH Method

g| D Lacey vEy(g) Lig-g+) ey
FL | 1 ]1.50400 | 0.0080867 | 0.0047576 | 0.01873042 | 0.9983
2 10.35629 [ 0.0694918 | 0.0857355 —_— 1.0361
FH | 1]1.52340 }{ 0.0081108 | 0.0051284 | 0.01799933 | 1.0006
2 10.36045 | 0.0858192 | 0.1216174 -— 1.0490
FC {1 ]1.43368 | 0.0100475 | 0.0046210 | 0.01805838 | 0.9868
2 10.30619 | 0.0789324 | 0.0757924 - 0.8890
R?® | 1[1.02020|0.0014103 -—— 0.03087685 | 1.0827
211.21120 | 0.1004083 - - 2.7003

*The flux- and volume-weighted two-group reflector diffu-
sion constants are 1.42065 and 0.25344, respectively.
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12 cm

{(a) Fuel assembly geometry

FC|(FL |FC | FL|FH| R

FL|FL |FC|FH |l R

FC|FH |FH || R

FH||R | R

(b) PWR core octant geometry

Fig. 1. Koebke PWR benchmark geometry: (a) struc-
ture of the 8 x 8 fuel assembly with four channels that con-
tain either control rods or water and (b) the core octant,
where FL and FC are unrodded and rodded low-enriched fuel
assemblies, FH is highly enriched unrodded assemblies, and
R is the reflector, including the stainless steel core shroud.

good. This is rather surprising as the same cross-section
set was used for both the diffusion and the transport
calculations. In a realistic application, the cell homog-
enized transport equivalent cross sections should be ob-
tained by a procedure such as Hébert’s SPH method®
so that a transport calculation with homogenized cells
would be equivalent to an explicit heterogeneous trans-
port calculation over a fuel assembly. In principle,
equivalent cell cross sections for a diffusion calculation
over an assembly are not necessarily the same, but the
results show that the differences are small (equivalent
diffusion cell cross section is discussed in Sec. IV). The
results indicate that the use of the diffusion theory for
typical PWR fuel assembly calculations does not intro-
duce a significant error into the global results, provided
that a fully converged diffusion solution in multigroup
form is used. From experience, a two-group treatment
in a fuel assembly is grossly inadequate.

The coarse-mesh power distribution was not re-
ported by Koebke,* so it was generated from the pub-
lished SET cross sections with the GNOMER code. The
kesr and the maximum relative error in the average as-
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Average power distribution
(reference and % differences)

1.356 1.601 1.103 1.030 0.830

-0.3 -0.1 -0.3 -0.1 +0.2

-0.6 -0.7 -0.6 -0.4 -0.4

-0.2 -0.9 -0.1 -0.3 -0.1

1.575 1.299 0.811 0.769

+0.0 -0.1 -0.1 +0.2

-0.5 -0.5 +0.4 -0.2

-0.9 -0.6 +0.9 +0.2

0.921 1.059 0.618

-0.1 +0.0 +0.3

k +0.4 +0.9 +0.6

eff +0.6 +0.4 +0.6
a | 0.90384 0.742
b | 0.90273 +0.2
c | 0.90614 +1.5
d | 0.90269 +0.8

Fig. 2. Koebke PWR benchmark results for the rodded
core. The entries are as follows: (a) reference transport so-
lution by Koebke, (b) heterogeneous fine-mesh diffusion so-
lution by the GNOMER code, (c) coarse-mesh diffusion
solution using SET homogenized cross sections by Koebke,
and (d) coarse-mesh diffusion solution using EDH homog-
enization and the GNOMER code.

sembly power differ very slightly from the published
results, but the differences are negligible.

The two-group EDH cross sections for different
fuel assemblies were prepared as described earlier.
Global calculation was performed by using GNOMER.
In spite of the additional simplifications in cross-sec-
tion homogenization, the results of the EDH method
are comparable with those using SET cross sections,
and they agree well with the reference results.

IV. APPLICATION TO CELL HOMOGENIZATION

The EDH method was also applied to unit cell ho-
mogenization problems. A typical PWR fuel assembly
was considered.

To test cell homogenization methods, it would be
ideal to perform a detailed multigroup transport cal-
culation of a fuel assembly in full heterogeneous geom-
etry. Unfortunately, the WIMS/D-4 lattice code,'?
which we use for lattice calculations, cannot handle
problems of such complexity because of numerical and
computational limitations. Published results, which
could be used as reference, are usually restricted to two
groups, which we consider inadequate. Therefore, a
geometrically simpler test case was considered.

A patch of unit cells was assumed that contained
a 3 x 3 array of cells with white boundary conditions,
representing approximately a cutout of a fuel assem-
bly. The geometry is shown schematically in Fig. 3. The
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__________________________

Fig. 3. Lattice cell array configuration. The peripheral
cells all contain fuel (f), while the central cell (¢) may con-
tain a fuel rod, water, a BPR, or a control rod. When a fuel
rod is contained in the central cell, an extra water region is
added on the outside (dashed line).

outer cells always contain fuel rods, while the central
cell may contain a fuel rod, water, a burnable poison
rod (BPR), or a control rod. To preserve the average
fuel-to-moderator ratio of a real assembly (due to wa-
ter channels), an extra layer of water was added in some
cases. The cell patches were as follows:

1. fuel cell array with an extra water region on the
outside

2. array with a water-filled channel in the center
3. array with a BPR (boron glass type) in the center

4. array with a control rod (Ag-In-Cd type) in the
center.

The dimensions and material composition of a real
PWR with 2.6 wt% enriched fuel were taken. Since this
test case is not intended to be used as a benchmark, the
detailed geometry (i.e., gap and cladding thickness,
spacer grids, guide tubes, etc.) and material composi-
tion are not specified.

Reference calculations for the patches of cells con-
taining different types of cells in the center were per-
formed with the explicit two-dimensional collision
probability method of WIMS (the so-called P1J trans-
port option) in a 32-group approximation. For the cen-
tral cell, the volume average group flux (i.e., the cell
spectrum) and average cross sections according to the
FVH method for each type of cell were read from the
cell edit of the WIMS output. The diffusion constant
was defined as 1/3%,,, where £,, is the cell average
transport cross section. Condensation to six groups
with the cell spectrum was performed. The central cell
boundary flux was approximated by the average flux

NUCLEAR SCIENCE AND ENGINEERING

of the outermost region of the cell. The multiplication
factor was read from the leakage edit of WIMS. This
information was sufficient to perform EDH correction
of the six-group cross-section set. The method could be
applied to the full 32-group cross-section set, but a
parametric study on a real PWR-type assembly showed
that a six-group data set introduces a relatively small
error, with the benefit of a significant saving in the pro-
cessing time.

To test the EDH method for cell homogenization,
equivalent patches of homogenized cells were set up.
Homogenized cell cross sections prepared by the FVH
and EDH methods were used. Calculations in the six-
group diffusion approximation and with reflective
boundary conditions on the outer boundary of the
patch were made with the GNOMER code. The values
of the multiplication factors were compared with the
reference 32-group collision probability (P1J) calcula-
tions. The results are presented in Table I11. The FVH
and EDH methods are considered. The effect of sim-
plified geometry transport solution (the so-called DSN
transport option in WIMS) to obtain homogenized
cross sections for the central cell is also considered (la-
beled EDH/DSN).

The homogenized fuel cell cross sections were al-
ways taken from the central cell transport solution of
patch 1.

The diffusion solution over patch 1 is almost an
infinite-medium problem because the heterogeneity due
to a thin water layer on the outside is negligible and the
cells are homogeneous by definition. Good agreement
with the reference k. value shows that condensed and
homogenized diffusion parameters of the unit cells were
derived consistently.

Patch 2 represents a water gap at the center of a fuel
cell array. From a global point of view, this heteroge-
neity is not very strong since the change in k,; com-
pared with a complete array of fuel cells remains below
0.7% Ak/k. The small differences in k. in the ho-
mogenized diffusion solution can be attributed to in-
appropriate fuel cell cross sections, which correspond

TABLE 111

Errors in Multiplication Factor for Patches of Cells
from Equivalent Diffusion Calculations and
Different Homogenization Options
Compared with Explicit Collision
Probability Calculations

Diffusion (Ak/k x 10°)
Transport
Patch Kofy FVH EDH EDH/DSN
1 1.11928 +18 +6 —-28
2 1.11176 -71 —163 -195
3 0.84957 —1964 -23 —175
4 0.59723 —9521 —810 -771
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to patch 1 with a much larger overall fuel-to-moderator
ratio. The differences are not physically significant.

Patch 3 and particularly patch 4 contain strong ab-
sorbers at the center. The performance of the EDH
method is quite remarkable, considering the simplicity
of the six-group diffusion calculation compared with
the reference 32-group transport solution. The homog-
enization error is reduced by an order of magnitude if
EDH is applied instead of the simple FVH method.

In practice, an explicit two-dimensional collision
probability calculation is excessively time-consuming.
To reduce computation costs, the central cell is mod-
eled explicitly, but the surrounding fuel cells are treated
in the so-called supercell approximation by smearing
them into equivalent concentric rings (this is done au-
tomatically by WIMS). The resulting configuration in
one-dimensional radial geometry can be solved effec-
tively by the S, method, which is also available in
WIMS (i.e., the DSN transport option). The results in
Table I1I (labeled EDH/DSN) indicate that the addi-
tional error introduced by the simplified transport treat-
ment in deriving the equivalent homogenized cross
sections is minimal, while the computational time is re-
duced by an order of magnitude.

For PWR core calculations, it is proposed that a
simplified transport (DSN) calculation and the EDH
method be used to obtain few-group cell cross sections.
A multigroup diffusion theory calculation over a fuel
assembly with a critical albedo search and the EDH
method can then be applied to generate assembly-
averaged two-group cross sections to be used for global
reactor analysis.

V. COMBINED EFFECTS ON GLOBAL
REACTOR ANALYSIS

To analyze the effects on real PWR cores, some test
calculations were done for the Kriko nuclear power
plant cycle-1 core [a Westinghouse 600-MW (electric) re-
actor]. The core was loaded with three types of fuel:
2.1, 2.6, and 3.1 wt% enrichment, respectively. Some
assemblies were loaded with BPRs in clusters of 8 or
12. The core loading is shown in Fig. 4, which repre-
sents a core octant.

The simplified 32-group transport calculation (DSN)
was used for unit-cell calculations. Various homogeni-
zation options were tested for preparing six-group unit
cell cross sections (for fuel rods, water gaps, BPRs, and

Differences (%) in average power distribution

21 -10.2 21 -95 |21 -84 (26 -44 |21 +00}26 +3.0 |31 +10.3
-8.6 -7.3 71 2.7 +0.4 +2.5 +7.6
-6.7 -4.9 -5.5 -1.0 +0.6 +1.9 +5.3
-6.0 -6.1 -4.1 -3.7 +1.8 +1.0 +6.9

C 3418 -29|B -16}16 -13 |D +1.7 |8 -0.3 +3.6

2.1 -10.2 |26 -59 | 21 -5.1 |26 -+05 |26 +3.5 (3.1 +11.7
-8.7 -3.9 -4.2 +1.2 +2.1 +9.1
7.0 -1.7 -34 +1.7 +0.8 +6.8
-5.8 -4.5 -19 -0.8 +1.8 +8.6
S -32 116 -13 -06 (12 -04 |A -0.3 +5.1
21 -5.7 j26 -1.1 j2a1 +40.3 (31 +47.6
-4.7 +0.1 +0.3 +5.5
-3.6 +1.0 +0.0 +3.7
-2.2 -1.6 +0.6 +5.0
-04 |12 -02 1S -0.3 +2.5
21 -2.8 |31 +3.0 |31 +8.6
-2.5 +2.2 +6.5
-2.5 +1.2 +4.5
AC, -19 +0.6 +6.3
(ppm) C -2.1 |8 -0.2 +3.8
a 16 3.1 +4.6
b 8 +2.8
c 4 +1.0
d 10 +2.7
e 37 +0.9

Fig. 4. Influence of different homogenization options on PWR core critical boron concentration and power distribu-
tion. On the left edge, the enrichment (weight percent), the control rod locations (A, B, C, D, or S), and the number of
BPRs (if any) are given. The reference power distribution results are flux-map measurements at hot-zero-power conditions.
The entries are as follows: (a) no criticality search, (b) critical buckling search, (c) critical albedo search, (d) EDH on assem-
bly cross sections and critical albedo search, and (e) EDH on cell and assembly cross section and critical albedo search.
NUCLEAR SCIENCE AND ENGINEERING

VOL. 116 FEB. 1994



94 TRKOYV and RAVNIK

control rods), and two-group assembly-averaged cross
sections for global reactor analysis. In assembly calcu-
lations, one node per cell was used in GNOMER, and
second-order polynomial flux expansion for integration
was found to be adequate. In global reactor analysis
with GNOMER, one node per assembly was used, with
ten discrete regions in the axial direction and third-
order polynomial flux expansion for integration.

The calculated results were compared with the mea-
sured data and are presented in Fig. 4. The calculated
results are not best-estimate design values because for
better comparison, the same reflector constants were
used in all cases. They were obtained from some older
analyses and were not position dependent. The reflec-
tor constants and the WIMS multigroup library are
considered to be the major sources of systematic errors
in the current calculations.

Measurements were performed at 4% power with
the D-bank of control rods 17% inserted into the core.
These effects were not accounted for in the calculations.
Also, at symmetric locations in the core quadrants, dif-
ferences of up to 10% in the measured power were ob-
served, particularly on the core periphery, where the
power level is relatively low. It is estimated that errors
in the measurements amount to ~5%.

Different homogenization options were considered.
In row 1 in Fig. 4, the differences in predicted critical
boron concentration and power distribution are dis-
played when no criticality search is performed and FVH
cross sections are used.

The differences in row 2 were obtained with a crit-
ical buckling search. The results show that the overall
leakage from the core increases, thus lowering the pre-
dicted critical boron concentration and causing the
power distribution to be more peaked at the center. The
change in average power is larger in the assemblies con-
taining strong absorbers. The critical buckling search
mainly affects the results through spectral changes since
the flux distributions in assembly calculations are
hardly affected. Although the criticality search effect
was negligible in the Koebke PWR benchmark, its
effect in a real application is much more pronounced.

For the differences in row 3, the critical albedo
search was performed, so that radial leakage effects
were treated explicitly. Comparison with the previous
test in row 2 shows that flux redistribution effects due
to radial leakage are at least as important as the spec-
tral effects alone. It can be concluded that an effective
buckling may be adequate for representing the axial
leakage, but it is physically unrealistic for modeling the
leakage in the radial direction.

The effects of generating assembly-averaged cross
sections with the EDH method are shown in row 4. The
assembly average power decreases in assemblies con-
taining strong absorbers (i.e., BPRs). This decreases the
importance of strongly absorbing regions, so the over-
all core reactivity increases and so does the predicted
critical boron concentration.
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The effects of EDH on cell cross sections is much
stronger, as seen from the results in row 5. It causes a
significant increase in reactivity of assemblies contain-
ing strong absorbers (as seen from the previous results)
and hence the overall reactivity of the core, but the
average assembly power, compared with the nearest
neighbors, is affected to a smaller extent. A consider-
able increase in the critical boron concentration is ob-
served, and the power distribution becomes more
peaked at the center.

The EDH method was also applied in the calcula-
tion of a rodded core to calculate the change in reac-
tivity due to the insertion of control rods. The results
are presented in Table IV. The difference between the
FVH and EDH methods in generating the cross sections
is 16% in control rod worth. Although the calculated
results are not best estimate, the results using the EDH
method agree well with the measurements. The accu-
racy of the control rod worth measurements is esti-
mated to be +5%.

VI. SUMMARY OF RESULTS

VI.A. Fuel Assembly Cross-Section
Homogenization

The EDH method is a special case of the SET
method where symmetric boundary conditions are as-
sumed. Since we are usually interested in core config-
urations that are approximately critical, Keyp = 1 s
implied, and the albedo is adjusted until the criticality
condition is satisfied. The method could be refined by
defining criteria to obtain group-dependent albedoes
that would satisfy the criticality condition, but this pos-
sibility has not been investigated further.

The EDH method for fuel assembly cross-section
homogenization produces favorable results, especially
if we consider the following:

1. No new parameters are introduced.

2. Standard diffusion codes without modifications
are applicable.

3. The cross sections are environment independent.

4. The additional computational cost of EDH cor-
rection to the cross sections is practically negligible.

VI.B. Cell Cross-Section Homogenization

It has been demonstrated that the EDH method
for generating homogenized cross sections works well
for fuel assemblies as well as for individual cells within
an assembly. In comparison with the reference two-
dimensional transport solution, the equivalent diffusion
solution was capable of predicting the change in reac-
tivity to within 0.01 Ak/k even in the extreme case of
a control rod where the overall change in reactivity was
~0.5 Ak/k.

VOL. 116 FEB. 1994



PWR CROSS-SECTION HOMOGENIZATION 95

TABLE 1V

The Effect of Different Homogenization
Options on Control Rod Worth*

A+B+C+D A+B+C+D+S
Method (Ak/k x 10%) (Ak/k x 10°)
FVH -— 11062
EDH 5495 9533
Measured 5234 ——

*Control rod banks A, B, C, D, and S were considered.

VI.C. Combined Effects on Global
Reactor Analysis

The results show that leakage in the radial direction
must be accounted for explicitly. The derivation of
equivalent homogenized diffusion cross sections for
fuel assemblies as well as for the cells within an assem-
bly is crucial for accurate predictions of power distri-
butions and reactivity changes in PWR cores. In fact,
homogenization procedures seem to be more important
than transport effects, provided that at least six to ten
groups are used in assembly calculations. Under such
circumstances, standard diffusion codes can be applied
for assembly calculations as well as for global reac-
tor analysis without significant loss of accuracy, and
transport theory methods are restricted to lattice cell
calculations.

The proposed EDH method provides a simple tool
for deriving few-group homogenized constants for stan-
dard diffusion codes with a negligible additional com-
putational effort.

REFERENCES

1. A. F. HENRY, B. A. WORLEY, and A. A. MOR-
SHED, “Spatial Homogenization of Diffusion Theory Pa-
rameters,” Proc. Specialists’ Mtg. Homogenization Methods
in Reactor Physics, Lugano, Switzerland, November 13-15,
1978, IAEA-TECDOC-231, International Atomic Energy
Agency (1978).

2. K. KOEBKE, “A New Approach to Homogenization
and Group Condensation,” Proc. Specialists’ Mtg. Homog-
enization Methods in Reactor Physics, Lugano, Switzerland,
November 13-15, 1978, IAEA-TECDOC-231, International
Atomic Energy Agency (1978).

NUCLEAR SCIENCE AND ENGINEERING VOL. 116

3. K. S. SMITH, “Assembly Homogenization Techniques
for Light Water Reactor Analysis,” Prog. Nucl. Energy, 17,
3, 303 (1986).

4. K. KOEBKE, “Advances in Homogenization and De-
homogenization,” Proc. Int. Topl. Mtg. Advances in Math-
ematical Methods for the Solution of Nuclear Engineering
Problems, Munich, Germany, April 27-29, 1981.

5. A. KAVENOKY, “The SPH Homogenization Method,”
Proc. Specialists’ Mtg. Homogenization Methods in Reac-
tor Physics, Lugano, Switzerland, November 13-15, 1978,
IAEA-TECDOQOC-231, International Atomic Energy Agency
(1978).

6. A. HEBERT and P. BENOIST, “A Consistent Tech-
nique for the Global Homogenization of a Pressurized Wa-
ter Reactor Assembly,” Nucl. Sci. Eng., 109, 360 (1991).

7. A. HEBERT, “A Consistent Technique for the Pin-by-
Pin Homogenization of a Pressurized Water Reactor Assem-
bly,” Nucl. Sci. Eng., 113, 227 (1993).

8. A. HEBERT and G. MATHONNIERE, “Development
of a Third Generation SPH Method for the Homogenization
of a PWR Assembly,” Proc. Conf. Mathematical Methods
and Supercomputing in Nuclear Applications, Karlsruhe,
Germany, April 1993, Vol. 1, p. 558.

9. H. ZHANG, RIZWAN-UDDIN, and J. J. DORNING,
“Systematic Cell and Assembly Homogenization and Local
Flux Reconstruction for Nodal Diffusion Methods,” Proc.
Topl. Mtg. Advances in Mathematics, Computations, and
Reactor Physics, Pittsburgh, Pennsylvania, April 28, 1991,
Vol. 4, p. 16.2/4-1, American Nuclear Society (1991).

10. H. ZHANG, RIZWAN-UDDIN, and J. J. DORNING,
“Application of a Systematic Homogenization Theory for
Nodal Diffusion Methods,” Trans. Am. Nucl. Soc., 66, 497
(1992).

11. A. TRKOV, “GNOMER — Multigroup 3D Neutron Dif-
fusion Nodal Code with Thermohydraulic Feedbacks,” 1JS-
DP-6688, Institute Jozef Stefan (1992).

12. A. TRKOV, M. NAJZER, and L. SKERGET, “Variant
of the Green’s Function Nodal Method for Neutron Diffu-
sion,” J. Nucl. Sci. Technol., 27, 8, 766 (1990).

13. J. R. ASKEW, F. J. FAYERS, and P. B. KEMSHELL,
“A General Description of the Lattice Code WIMS,” J. Br.
Nucl. Energy Soc., 5, 564 (Oct. 1966).

FEB. 1994



	Untitled-2.pdf
	Untitled-3.pdf
	Untitled-4.pdf
	Untitled-5.pdf
	Untitled-6.pdf
	Untitled-7.pdf
	Untitled-8.pdf
	Untitled-9.pdf
	Untitled-10.pdf
	Untitled-11.pdf
	Untitled-13.pdf

